skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Competition-driven eco-evolutionary feedback reshapes bacteriophage lambda’s fitness landscape and enables speciation
Abstract A major challenge in evolutionary biology is explaining how populations navigate rugged fitness landscapes without getting trapped on local optima. One idea illustrated by adaptive dynamics theory is that as populations adapt, their newly enhanced capacities to exploit resources alter fitness payoffs and restructure the landscape in ways that promote speciation by opening new adaptive pathways. While there have been indirect tests of this theory, to our knowledge none have measured how fitness landscapes deform during adaptation, or test whether these shifts promote diversification. Here, we achieve this by studying bacteriophage$$\lambda$$ λ , a virus that readily speciates into co-existing receptor specialists under controlled laboratory conditions. We use a high-throughput gene editing-phenotyping technology to measure$$\lambda$$ λ ’s fitness landscape in the presence of different evolved-$$\lambda$$ λ competitors and find that the fitness effects of individual mutations, and their epistatic interactions, depend on the competitor. Using these empirical data, we simulate$$\lambda$$ λ ’s evolution on an unchanging landscape and one that recapitulates how the landscape deforms during evolution.$$\lambda$$ λ heterogeneity only evolves in the shifting landscape regime. This study provides a test of adaptive dynamics, and, more broadly, shows how fitness landscapes dynamically change during adaptation, potentiating phenomena like speciation by opening new adaptive pathways.  more » « less
Award ID(s):
1934515
PAR ID:
10488214
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Using proton–proton collision data corresponding to an integrated luminosity of$$140\hbox { fb}^{-1}$$ 140 fb - 1 collected by the CMS experiment at$$\sqrt{s}= 13\,\text {Te}\hspace{-.08em}\text {V} $$ s = 13 Te V , the$${{{\Lambda }} _{\text {b}}^{{0}}} \rightarrow {{\text {J}/\uppsi }} {{{\Xi }} ^{{-}}} {{\text {K}} ^{{+}}} $$ Λ b 0 J / ψ Ξ - K + decay is observed for the first time, with a statistical significance exceeding 5 standard deviations. The relative branching fraction, with respect to the$${{{\Lambda }} _{\text {b}}^{{0}}} \rightarrow {{{\uppsi }} ({2\textrm{S}})} {{\Lambda }} $$ Λ b 0 ψ ( 2 S ) Λ decay, is measured to be$$\mathcal {B}({{{\Lambda }} _{\text {b}}^{{0}}} \rightarrow {{\text {J}/\uppsi }} {{{\Xi }} ^{{-}}} {{\text {K}} ^{{+}}} )/\mathcal {B}({{{\Lambda }} _{\text {b}}^{{0}}} \rightarrow {{{\uppsi }} ({2\textrm{S}})} {{\Lambda }} ) = [3.38\pm 1.02\pm 0.61\pm 0.03]\%$$ B ( Λ b 0 J / ψ Ξ - K + ) / B ( Λ b 0 ψ ( 2 S ) Λ ) = [ 3.38 ± 1.02 ± 0.61 ± 0.03 ] % , where the first uncertainty is statistical, the second is systematic, and the third is related to the uncertainties in$$\mathcal {B}({{{\uppsi }} ({2\textrm{S}})} \rightarrow {{\text {J}/\uppsi }} {{{\uppi }} ^{{+}}} {{{\uppi }} ^{{-}}} )$$ B ( ψ ( 2 S ) J / ψ π + π - ) and$$\mathcal {B}({{{\Xi }} ^{{-}}} \rightarrow {{\Lambda }} {{{\uppi }} ^{{-}}} )$$ B ( Ξ - Λ π - )
    more » « less
  2. Abstract The radiation of steady surface gravity waves by a uniform stream$$U_{0}$$ U 0 over locally confined (width$$L$$ L ) smooth topography is analyzed based on potential flow theory. The linear solution to this classical problem is readily found by Fourier transforms, and the nonlinear response has been studied extensively by numerical methods. Here, an asymptotic analysis is made for subcritical flow$$D/\lambda > 1$$ D / λ > 1 in the low-Froude-number ($$F^{2} \equiv \lambda /L \ll 1$$ F 2 λ / L 1 ) limit, where$$\lambda = U_{0}^{2} /g$$ λ = U 0 2 / g is the lengthscale of radiating gravity waves and$$D$$ D is the uniform water depth. In this regime, the downstream wave amplitude, although formally exponentially small with respect to$$F$$ F , is determined by a fully nonlinear mechanism even for small topography amplitude. It is argued that this mechanism controls the wave response for a broad range of flow conditions, in contrast to linear theory which has very limited validity. 
    more » « less
  3. Abstract Recent progress in microspherical superlens nanoscopy raises a fundamental question about the transition from super-resolution properties of mesoscale microspheres, which can provide a subwavelength resolution$$\sim \lambda /7$$ λ / 7 , to macroscale ball lenses, for which the imaging quality degrades because of aberrations. To address this question, this work develops a theory describing the imaging by contact ball lenses with diameters$$30 30 < D / λ < 4000 covering this transition range and for a broad range of refractive indices$$1.3<2.1$$ 1.3 < n < 2.1 . Starting from geometrical optics we subsequently proceed to an exact numerical solution of the Maxwell equations explaining virtual and real image formation as well as magnificationMand resolution near the critical index$$n\approx 2$$ n 2 which is of interest for applications demanding the highestMsuch as cellphone microscopy. The wave effects manifest themselves in a strong dependence of the image plane position and magnification on$$D/\lambda $$ D / λ , for which a simple analytical formula is derived. It is demonstrated that a subwavelength resolution is achievable at$$D/\lambda \lesssim 1400$$ D / λ 1400 . The theory explains the results of experimental contact-ball imaging. The understanding of the physical mechanisms of image formation revealed in this study creates a basis for developing applications of contact ball lenses in cellphone-based microscopy. 
    more » « less
  4. We prove an equivalence between the classical equations of motion governing vacuum gravity compactifications (and more general warped-product spacetimes) and a concavity property of entropy under time evolution. This is obtained by linking the theory of optimal transport to the Raychaudhuri equation in the internal space, where the warp factor introduces effective notions of curvature and (negative) internal dimension. When the Reduced Energy Condition is satisfied, concavity can be characterized in terms of the cosmological constant\Lambda Λ ; as a consequence, the masses of the spin-two Kaluza-Klein fields obey bounds in terms of\Lambda Λ alone. We show that some Cheeger bounds on the KK spectrum hold even without assuming synthetic Ricci lower bounds, in the large class of infinitesimally Hilbertian metric measure spaces, which includes D-brane and O-plane singularities. As an application, we show how some approximate string theory solutions in the literature achieve scale separation, and we construct a new explicit parametrically scale-separated AdS solution of M-theory supported by Casimir energy. 
    more » « less
  5. A<sc>bstract</sc> The collective behavior of$$ {\textrm{K}}_{\textrm{S}}^0 $$ K S 0 and$$ \Lambda /\overline{\Lambda} $$ Λ / Λ ¯ strange hadrons is studied by measuring the elliptic azimuthal anisotropy (v2) using the scalar-product and multiparticle correlation methods. Proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy$$ \sqrt{s_{\textrm{NN}}} $$ s NN = 8.16 TeV and lead-lead (PbPb) collisions at$$ \sqrt{s_{\textrm{NN}}} $$ s NN = 5.02 TeV collected by the CMS experiment at the LHC are investigated. Nonflow effects in the pPb collisions are studied by using a subevent cumulant analysis and by excluding events where a jet with transverse momentum greater than 20 GeV is present. The strange hadronv2values extracted in pPb collisions via the four- and six-particle correlation method are found to be nearly identical, suggesting the collective behavior. Comparisons of the pPb and PbPb results for both strange hadrons and charged particles illustrate how event-by-event flow fluctuations depend on the system size. 
    more » « less