skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stony coral tissue loss disease: a review of emergence, impacts, etiology, diagnostics, and intervention
Stony coral tissue loss disease (SCTLD) is destructive and poses a significant threat to Caribbean coral reef ecosystems. Characterized by the acute loss of coral tissue, SCTLD has impacted over 22 stony coral species across the Caribbean region, leading to visible declines in reef health. Based on the duration, lethality, host range, and spread of this disease, SCTLD is considered the most devastating coral disease outbreak ever recorded. Researchers are actively investigating the cause and transmission of SCTLD, but the exact mechanisms, triggers, and etiological agent(s) remain elusive. If left unchecked, SCTLD could have profound implications for the health and resilience of coral reefs worldwide. To summarize what is known about this disease and identify potential knowledge gaps, this review provides a holistic overview of SCTLD research, including species susceptibility, disease transmission, ecological impacts, etiology, diagnostic tools, host defense mechanisms, and treatments. Additionally, future research avenues are highlighted, which are also relevant for other coral diseases. As SCTLD continues to spread, collaborative efforts are necessary to develop effective strategies for mitigating its impacts on critical coral reef ecosystems. These collaborative efforts need to include researchers from diverse backgrounds and underrepresented groups to provide additional perspectives for a disease that requires creative and urgent solutions.  more » « less
Award ID(s):
2047235 2109622
PAR ID:
10488356
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
10
ISSN:
2296-7745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Stony coral tissue loss disease (SCTLD) was first observed in the United States Virgin Islands in January 2019 on a reef at Flat Cay off the island of St. Thomas. A year after its emergence, the disease had spread to several reefs around St. Thomas causing significant declines in overall coral cover. Rates of tissue loss are an important metric in the study of coral disease ecology, as they can inform many aspects of etiology such as disease susceptibility and resistance among species, and provide critical parameters for modeling the effects of disease among heterogenous reef communities. The present study quantified tissue loss rates attributed to SCTLD among six abundant reef building species ( Colpophyllia natans, Montastraea cavernosa, Diploria labyrinthiformis, Pseudodiploria strigosa, Orbicella annularis , and Porites astreoides ). Field-based 3D models of diseased corals, taken approximately weekly, indicated that the absolute rates of tissue loss from SCTLD slowed through time, corresponding with the accumulation of thermal stress that led to mass bleaching. Absolute tissue loss rates were comparable among species prior to the bleaching event but diverged during and remained different after the bleaching event. Proportional tissue loss rates did not vary among species or through time, but there was considerable variability among M. cavernosa colonies. SCTLD poses a significant threat to reefs across the Caribbean due to its persistence through time, wide range of susceptible coral species, and unprecedented tissue loss rates. Intervention and management efforts should be increased during and immediately following thermal stress events in order maximize resource distribution when disease prevalence is decreased. 
    more » « less
  2. As climate change drives health declines of tropical reef species, diseases are further eroding ecosystem function and habitat resilience. Coral disease impacts many areas around the world, removing some foundation species to recorded low levels and thwarting worldwide efforts to restore reefs. What we know about coral disease processes remains insufficient to overcome many current challenges in reef conservation, yet cumulative research and management practices are revealing new disease agents (including bacteria, viruses, and eukaryotes), genetic host disease resistance factors, and innovative methods to prevent and mitigate epizootic events (probiotics, antibiotics, and disease resistance breeding programs). The recent outbreak of stony coral tissue loss disease across the Caribbean has reenergized and mobilized the research community to think bigger and do more. This review therefore focuses largely on novel emerging insights into the causes and mechanisms of coral disease and their applications to coral restoration and conservation. 
    more » « less
  3. Abstract Stony coral tissue loss disease (SCTLD) remains an unprecedented epizootic disease, representing a substantial threat to the persistence and health of coral reef ecosystems in the Tropical Western Atlantic since its first observation near Miami, Florida in 2014. In addition to transport between adjacent reefs indicative of waterborne pathogen(s) dispersing on ocean currents, it has spread throughout the Caribbean to geographically- and oceanographically-isolated reefs, in a manner suggestive of ship and ballast water transmission. Here we evaluate the potential for waterborne transmission of SCTLD including via simulated ballast water, and test the efficacy of commonly-used UV radiation treatment of ballast water. Two species of reef-building corals ( Orbicella faveolata and Pseudodiploria strigosa ) were subjected to (1) disease-exposed or UV-treated disease-exposed water, and (2) a ballast hold time series of disease-exposed water in two carefully-controlled experiments to evaluate transmission. Our experiments demonstrated transmission of SCTLD through water, rather than direct contact between diseased and healthy corals. While UV treatment of disease-exposed water led to a 50% reduction in the number of corals exhibiting disease signs in both species, the statistical risk of transmission and volume of water needed to elicit SCTLD lesions remained similar to untreated disease-exposed water. The ballast hold time (24 h vs. 120 h) did not have a significant effect on the onset of visible disease signs for either species, though there appeared to be some evidence of a concentration effect for P. strigosa as lesions were only observed after the 120 h ballast hold time. Results from both experiments suggest that the SCTLD pathogens can persist in both untreated and UV-treated ballast water and remain pathogenic. Ballast water may indeed pose a threat to the continued spread and persistence of SCTLD, warranting further investigation of additional ballast water treatments and pathogen detection methods. 
    more » « less
  4. Coral communities in the Caribbean face a new and deadly threat in the form of the highly virulent multi-host stony coral tissue loss disease (SCTLD). In late January of 2019, a disease with signs and characteristics matching that of SCTLD was found affecting a reef off the coast of St. Thomas in the U.S. Virgin Islands (USVI). Identification of its emergence in the USVI provided the opportunity to document the initial evolution of its spatial distribution, coral species susceptibility characteristics, and its comparative impact on coral cover at affected and unaffected coral reef locations. Re-assessments at sentinel sites and long-term monitoring locations were used to track the spread of the disease, assess species affected, and quantify its impact. The disease was initially limited to the southwest of St. Thomas for several months, then spread around the island and to the neighboring island of St. John to the east. Differences in disease prevalence among species were similar to reports of SCTLD from other regions. Highly affected species included Colpophyllia natans, Eusmilia fastigiata, Montastraea cavernosa, Orbicella spp., and Pseudodiploria strigosa. Dendrogyra cylindrus and Meandrina meandrites were also highly affected but showed more variability in disease prevalence, likely due to initial low abundances and the rapid loss of colonies due to disease. Siderastrea spp. were less affected and showed lower prevalence. Species previously reported as unaffected or data deficient that were found to be affected by SCTLD included Agaricia spp., Madracis spp., and Mycetophyllia spp. We also observed multi-focal lesions at SCTLD-affected sites on colonies of Porites astreoides, despite that poritids have previously been considered low or not susceptible to SCTLD. Loss of coral cover due to acute tissue loss diseases, which were predominantly SCTLD, was significant at several monitoring locations and was more impactful than previous mass bleaching events at some sites. There are no signs that the USVI SCTLD outbreak is abating, therefore it is likely that this disease will become widespread across the U.S. Caribbean and British Virgin Islands in the near future. 
    more » « less
  5. Many Caribbean coral reefs are near collapse due to various threats. An emerging threat, stony coral tissue loss disease (SCTLD), is spreading across the Western Atlantic and Caribbean. Data from the U.S. Virgin Islands reveal how SCTLD spread has reduced the abundance of susceptible coral and crustose coralline algae and increased cyanobacteria, fire coral, and macroalgae. A Caribbean-wide structural equation model demonstrates versatility in reef fish and associations with rugosity independent of live coral. Model projections suggest that some reef fishes will decline due to SCTLD, with the largest changes on reefs that lose the most susceptible corals and rugosity. Mapping these projected declines in space indicates how the indirect effects of SCTLD range from undetectable to devastating. 
    more » « less