skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Topological and magnetic phase transitions in the bilayer Kitaev-Ising model
We investigate the phase diagram of a bilayer Kitaev honeycomb model with Ising interlayer interactions, deriving effective models via perturbation theory and performing Majorana mean-field theory calculations. We show that a diverse array of magnetic and topological phase transitions occur, depending on the direction of the interlayer Ising interaction and the relative sign of Kitaev interactions. When two layers have the same sign of the Kitaev interaction, a first-order transition from a Kitaev spin liquid to a magnetically ordered state takes place. The magnetic order points along the Ising axis and it is (anti)ferromagnetic for (anti)ferromagnetic Kitaev interactions. However, when two layers have opposite signs of the Kitaev interaction, we observe a notable weakening of magnetic ordering tendencies and the Kitaev spin liquid survives up to a remarkably larger interlayer exchange. Our mean-field analysis suggests the emergence of an intermediate gapped Z2 spin-liquid state, which eventually becomes unstable upon vison condensation. The confined phase is described by a highly frustrated 120∘ compass model. We furthermore use perturbation theory to study the model with the Ising axis pointing along the z axis or lying in the xy plane. In both cases, our analysis reveals the formation of one-dimensional Ising chains, which remain decoupled in perturbation theory, resulting in a subextensive ground-state degeneracy. Our results highlight the interplay between topological order and magnetic ordering tendencies in bilayer quantum spin liquids.  more » « less
Award ID(s):
2234352
PAR ID:
10488436
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review B
Volume:
109
Issue:
2
ISSN:
2469-9950
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the phase diagram of the Yao-Lee model with Kitaev-type spin-orbital interactions in the presence of Dzyaloshinskii-Moriya interactions and external magnetic fields. Unlike the Kitaev model, the Yao-Lee model can still be solved exactly under these perturbations due to the enlarged local Hilbert space. Through a variational analysis, we obtain a rich ground-state phase diagram that consists of a variety of vison crystals with periodic arrangements of background Z2 flux (i.e., visons). With an out-of-plane magnetic field, these phases have gapped bulk and chiral edge states, characterized by a Chern number ν and an associated chiral central charge c=ν/2 of edge states. We also find helical Majorana edge states that are protected by magnetic mirror symmetry. For the bilayer systems, we find that interlayer coupling can also stabilize new topological phases. Our results spotlight the tunability and the accompanying rich physics in exactly solvable spin-orbital generalizations of the Kitaev model. 
    more » « less
  2. Abstract Understanding the interplay between the inherent disorder and the correlated fluctuating-spin ground state is a key element in the search for quantum spin liquids. H3LiIr2O6is considered to be a spin liquid that is proximate to the Kitaev-limit quantum spin liquid. Its ground state shows no magnetic order or spin freezing as expected for the spin liquid state. However, hydrogen zero-point motion and stacking faults are known to be present. The resulting bond disorder has been invoked to explain the existence of unexpected low-energy spin excitations, although data interpretation remains challenging. Here, we use resonant X-ray spectroscopies to map the collective excitations in H3LiIr2O6and characterize its magnetic state. In the low-temperature correlated state, we reveal a broad bandwidth of magnetic excitations. The central energy and the high-energy tail of the continuum are consistent with expectations for dominant ferromagnetic Kitaev interactions between dynamically fluctuating spins. Furthermore, the absence of a momentum dependence to these excitations are consistent with disorder-induced broken translational invariance. Our low-energy data and the energy and width of the crystal field excitations support an interpretation of H3LiIr2O6as a disordered topological spin liquid in close proximity to bond-disordered versions of the Kitaev quantum spin liquid. 
    more » « less
  3. We study a Z_3 Kitaev model on the honeycomb lattice with nearest neighbor interactions. Based on matrix product state simulations and symmetry considerations, we find evidence that, with ferromagnetic isotropic couplings, the model realizes a chiral spin liquid, characterized by a possible U(1)_{12} chiral topological order. This is supported by simulations on both cylinder and strip geometries. On infinitely long cylinders with various widths, scaling analysis of entanglement entropy and maximal correlation length suggests that the model has a gapped two-dimensional bulk. The topological entanglement entropy is extracted and found to be in agreement with the U(1)_{12} topological order. On infinitely long strips with moderate widths, we find the model is critical with a central charge consistent with the chiral edge theory of the U(1)_{12} topological phase. We conclude by discussing several open questions. 
    more » « less
  4. We conduct a comprehensive study of three different magnetic semiconductors, CrI3, CrBr3, and CrCl3, by incorporating both few-layer and bilayer samples in van der Waals tunnel junctions. We find that the interlayer magnetic ordering, exchange gap, magnetic anisotropy, and magnon excitations evolve systematically with changing halogen atom. By fitting to a spin wave theory that accounts for nearest-neighbor exchange interactions, we are able to further determine a simple spin Hamiltonian describing all three systems. These results extend the 2D magnetism platform to Ising, Heisenberg, and XY spin classes in a single material family. Using magneto-optical measurements, we additionally demonstrate that ferromagnetism can be stabilized down to monolayer in more isotropic CrBr3, with transition temperature still close to that of the bulk. 
    more » « less
  5. none (Ed.)
    The recent prediction that honeycomb lattices of Co2+ (3d7) ions could host dominant Kitaev interactions provides an exciting direction for exploration of new routes to stabilizing Kitaev’s quantum spin liquid in real materials. Na3Co2SbO6 has been singled out as a potential material candidate provided that spin and orbital moments couple into a Jeff = 1/2 ground state, and that the relative strength of trigonal crystal field and spin-orbit coupling acting on Co ions can be tailored. Using x-ray linear dichroism (XLD) and x-ray magnetic circular dichroism (XMCD) experiments, alongside configuration interaction calculations, we confirm the counterintuitive positive sign of the trigonal crystal field acting on Co2+ ions and test the validity of the Jeff = 1/2 description of the electronic ground state. The results lend experimental support to recent theoretical predictions that a compression (elongation) of CoO6 octahedra along (perpendicular to) the trigonal axis would drive this cobaltate toward the Kitaev limit, assuming the Jeff = 1/2 character of the electronic ground state is preserved. 
    more » « less