skip to main content


This content will become publicly available on June 1, 2024

Title: Analysis of burr formation in finish machining of nickel-based superalloy with worn tools using micro-scale in-situ techniques
The formation of burrs is among the most significant factors affecting quality and productivity in machining. Burrs are a negative byproduct of machining processes that are difficult to avoid because of a limited understanding of the complex burr formation mechanisms in relation to cutting conditions, including both process parameters and tool condition. Thus, the objective of this work was to characterize burr formation under finish machining conditions via a high-speed, high-resolution in-situ experimental method. Various parameters pertaining to burr geometry such as height, thickness, and initial negative shear angle were measured both during and after cutting. Results showed that varying the conditions of uncut chip thickness, tool-wear, and cutting speed all have a significant effect on burr formation, although certain burr metrics were found to be insensitive with respect to different process conditions because the difference was statistically insignificant. This study provides new insights into the relationships between the workpiece material’s microstructure, machining parameters, and tool condition on both crack formation and propagation/plasticity during burr formation. Using digital image correlation (DIC) and a physics-based process model not previously utilized for burr formation analysis, the displacement and corresponding flow stress were calculated at the exit burr root location. This novel semi-analytical approach revealed that the normalized stress at the exit burr root was approximately equal to the flow stress for a variety of different conditions, indicating the potential for model-based prediction of burr formation mechanics. Finally, this study investigates factors that influence fracture evolution during exit burr formation. It was found that negative exit burrs are a direct result of high strain rate and high uncut chip thickness, which was expected, but also a microstructural size effect and a tool-wear effect, neither of which have been previously reported. By harnessing ultra-high-speed imaging and advanced optical microscopy techniques, this manuscript deals with the fundamentals of burr formation, including new insights into material response at the grain-scale to the loads imposed with both sharp and worn tools.  more » « less
Award ID(s):
2143806
NSF-PAR ID:
10488567
Author(s) / Creator(s):
;
Publisher / Repository:
International Journal of Machine Tools and Manufacture, Elsevier
Date Published:
Journal Name:
International Journal of Machine Tools and Manufacture
Volume:
189
Issue:
C
ISSN:
0890-6955
Page Range / eLocation ID:
104030
Subject(s) / Keyword(s):
["Burr formation, Inconel 718, Machining, Tool-wear, In-situ characterization, Digital image correlation (DIC)"]
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The overall quality of a machined part relies heavily on the tool path that is used. Several methods of toolpath generation are currently employed. A more recently developed toolpath method is known as trochoidal milling, which is also known by several other terms, such as adaptive milling. This type of path benefits the machining process by attempting to reduce chip thickness on entry and exit to the workpiece. In doing so, utilization of this type of path can reduce tool wear and enables higher feed rates, thus improving machining efficiency.\par Another advantage of the trochoidal approach is that it often creates paths which are relatively more smooth compared to traditionally designed paths. In order to follow the contours of the final geometry, the path can yield a significant number of direction changes which result in constantly changing forces directions on the tool. Chatter, or self-excited vibration that occurs in the tool or workpiece, can therefore be mitigated or avoided since resonance does not have time to increase the vibration’s amplitude. The trochoidal milling tool path strategy typically operates on the XY plane. The operator will assign a step-down value, which defines the Z-depth at each pass. This strategy can create issues during freeform milling: because of this step-down effect, the trochoidal path may only be able to perform clearing and not finishing. This is due to the excess material left on the workpiece when a large step-down value is used. A significant and randomized variation range of the trochoidal path is tested in this research. Using this new proposed method, stochastic behavior of the toolpath is implemented. The toolpath consists entirely of circular arcs which drive the tool in a pseudo-random fashion. As the tool nears completion of the pass, the generator will give heavier probabilistic weight to points which have not yet been machined, thereby improving the efficiency of the process. It is hypothesized that this toolpath can generate the same chip-inhibiting properties of the trochoidal path while granting the ability to perform finishing cuts. The stability of such a path is determined in this work. A key parameter of this path is the allowable radius range of the circular arcs. For example, short, tight arcs or long, relatively straight arcs can be used. The influence of these arcs is analyzed against several different metrics, such as generation time, path efficiency, and chatter. The stability lobes for several radii parameters were determined. It was found that the most efficient path utilized a median parameter value, signifying a negative parabolic relationship between path efficiency and tool path radius. It was also discovered that smaller arcs result in decreased chatter. Future studies will explore the behaviors of this path when milling 3D surfaces. 
    more » « less
  2. Abstract Machining-induced residual stresses (MIRS) are a main driver for distortion of thin-walled monolithic aluminum workpieces. Before one can develop compensation techniques to minimize distortion, the effect of machining on the MIRS has to be fully understood. This means that not only an investigation of the effect of different process parameters on the MIRS is important. In addition, the repeatability of the MIRS resulting from the same machining condition has to be considered. In past research, statistical confidence of MIRS of machined samples was not focused on. In this paper, the repeatability of the MIRS for different machining modes, consisting of a variation in feed per tooth and cutting speed, is investigated. Multiple hole-drilling measurements within one sample and on different samples, machined with the same parameter set, were part of the investigations. Besides, the effect of two different clamping strategies on the MIRS was investigated. The results show that an overall repeatability for MIRS is given for stable machining (between 16 and 34% repeatability standard deviation of maximum normal MIRS), whereas instable machining, detected by vibrations in the force signal, has worse repeatability (54%) independent of the used clamping strategy. Further experiments, where a 1-mm-thick wafer was removed at the milled surface, show the connection between MIRS and their distortion. A numerical stress analysis reveals that the measured stress data is consistent with machining-induced distortion across and within different machining modes. It was found that more and/or deeper MIRS cause more distortion. 
    more » « less
  3. The machining of nickel-based superalloys such as Inconel 718 still poses a great challenge. The high strength and temperature resistance of these materials lead to poor machinability, resulting in high process forces and extensive tool wear. However, this wear is stochastic when reaching a certain point and is di cult to predict. To generate consistent wear conditions, the tool wear can be decoupled from the milling process by creating artificial wear using grinding. In this paper, a multi-axis approach for decoupling tool wear is presented and analyzed. Therefore, scanning electron microscope images of di erent wear states – worn and artificially worn – are analyzed. In addition, the occurring process forces of naturally and contrived worn inserts are compared in orthogonal cutting experiments as an analogy setup. Finally, a finite element analysis using a novel methodology for segmenting relevant cutting edge sections using digital microscope images provides qualitative insights on the influence of different wear conditions. 
    more » « less
  4. null (Ed.)
    Drilling and milling operations are material removal processes involved in everyday conventional productions, especially in the high-speed metal cutting industry. The monitoring of tool information (wear, dynamic behavior, deformation, etc.) is essential to guarantee the success of product fabrication. Many methods have been applied to monitor the cutting tools from the information of cutting force, spindle motor current, vibration, as well as sound acoustic emission. However, those methods are indirect and sensitive to environmental noises. Here, the in-process imaging technique that can capture the cutting tool information while cutting the metal was studied. As machinists judge whether a tool is worn-out by the naked eye, utilizing the vision system can directly present the performance of the machine tools. We proposed a phase shifted strobo-stereoscopic method (Figure 1) for three-dimensional (3D) imaging. The stroboscopic instrument is usually applied for the measurement of fast-moving objects. The operation principle is as follows: when synchronizing the frequency of the light source illumination and the motion of object, the object appears to be stationary. The motion frequency of the target is transferring from the count information of the encoder signals from the working rotary spindle. If small differences are added to the frequency, the object appears to be slowly moving or rotating. This effect can be working as the source for the phase-shifting; with this phase information, the target can be whole-view 3D reconstructed by 360 degrees. The stereoscopic technique is embedded with two CCD cameras capturing images that are located bilateral symmetrically in regard to the target. The 3D scene is reconstructed by the location information of the same object points from both the left and right images. In the proposed system, an air spindle was used to secure the motion accuracy and drilling/milling speed. As shown in Figure 2, two CCDs with 10X objective lenses were installed on a linear rail with rotary stages to capture the machine tool bit raw picture for further 3D reconstruction. The overall measurement process was summarized in the flow chart (Figure 3). As the count number of encoder signals is related to the rotary speed, the input speed (unit of RPM) was set as the reference signal to control the frequency (f0) of the illumination of the LED. When the frequency was matched with the reference signal, both CCDs started to gather the pictures. With the mismatched frequency (Δf) information, a sequence of images was gathered under the phase-shifted process for a whole-view 3D reconstruction. The study in this paper was based on a 3/8’’ drilling tool performance monitoring. This paper presents the principle of the phase-shifted strobe-stereoscopic 3D imaging process. A hardware set-up is introduced, , as well as the 3D imaging algorithm. The reconstructed image analysis under different working speeds is discussed, the reconstruction resolution included. The uncertainty of the imaging process and the built-up system are also analyzed. As the input signal is the working speed, no other information from other sources is required. This proposed method can be applied as an on-machine or even in-process metrology. With the direct method of the 3D imaging machine vision system, it can directly offer the machine tool surface and fatigue information. This presented method can supplement the blank for determining the performance status of the machine tools, which further guarantees the fabrication process. 
    more » « less
  5. Trochoidal milling is an alternative path planning strategy with the potential of increasing material removal rate per unit of tool wear and therefore productivity cost while reducing cutting energy and improving tool performance. These characteristics in addition to low radial immersion of the tool make trochoidal milling a desirable tool path in machining difficult-to-cut alloys such as nickel-based superalloys. The objective of this work is to study the dynamic stability of trochoidal milling and investigate the interaction of tool path parameters with stability behavior when machining IN718 superalloy. While there exist a few published works on dynamics of circular milling (an approximated tool path for trochoidal milling), this work addresses the dynamics of the actual trochoidal tool path. First, the chip geometry quantification strategy is explained, then the chatter characteristic equation in trochoidal milling is formulated, and chatter stability lobes are generated. It is shown that unlike a conventional end-milling operation where the geometry of chips remains constant during the cut (resulting in a single chatter diagram representing the stability region), trochoidal milling chatter diagrams evolve in time with the change in geometry (plus cutter entering and exiting angles) of each chip. The limit of the critical depth of cut is compared with conventional end milling and shown that the depth of cut can be increased up to ten times while preserving stability. Finally, the displacement response of the cutting tool is simulated in the time domain for stable and unstable cutting regions; numerical simulation and theoretical results are compared. 
    more » « less