skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Graphene/MoS2/SiOx memristive synapses for linear weight update
Abstract Memristors for neuromorphic computing have gained prominence over the years for implementing synapses and neurons due to their nano-scale footprint and reduced complexity. Several demonstrations show two-dimensional (2D) materials as a promising platform for the realization of transparent, flexible, ultra-thin memristive synapses. However, unsupervised learning in a spiking neural network (SNN) facilitated by linearity and symmetry in synaptic weight update has not been explored thoroughly using the 2D materials platform. Here, we demonstrate that graphene/MoS2/SiOx/Ni synapses exhibit ideal linearity and symmetry when subjected to identical input pulses, which is essential for their role in online training of neural networks. The linearity in weight update holds for a range of pulse width, amplitude and number of applied pulses. Our work illustrates that the mechanism of switching in MoS2-based synapses is through conductive filaments governed by Poole-Frenkel emission. We demonstrate that the graphene/MoS2/SiOx/Ni synapses, when integrated with a MoS2-based leaky integrate-and-fire neuron, can control the spiking of the neuron efficiently. This work establishes 2D MoS2as a viable platform for all-memristive SNNs.  more » « less
Award ID(s):
1845331
PAR ID:
10488590
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
NPJ 2D materials and applications
Date Published:
Journal Name:
npj 2D Materials and Applications
Volume:
7
Issue:
1
ISSN:
2397-7132
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Memristive devices based on two-dimensional (2D) materials have emerged as potential synaptic candidates for next-generation neuromorphic computing hardware. Here, we introduce a numerical modeling framework that facilitates efficient exploration of the large parameter space for 2D memristive synaptic devices. High-throughput charge-transport simulations are performed to investigate the voltage pulse characteristics for lateral 2D memristors and synaptic device metrics are studied for different weight-update schemes. We show that the same switching mechanism can lead to fundamentally different pulse characteristics influencing not only the device metrics but also the weight-update direction. A thorough analysis of the parameter space allows simultaneous optimization of the linearity, symmetry, and drift in the synaptic behavior that are related through tradeoffs. The presented modeling framework can serve as a tool for designing 2D memristive devices in practical neuromorphic circuits by providing guidelines for materials properties, device functionality, and system performance for target applications. 
    more » « less
  2. Abstract 2D materials have been of considerable interest as new materials for device applications. Non‐volatile resistive switching applications of MoS2and WS2have been previously demonstrated; however, these applications are dramatically limited by high temperatures and extended times needed for the large‐area synthesis of 2D materials on crystalline substrates. The experimental results demonstrate a one‐step sulfurization method to synthesize MoS2and WS2at 550 °C in 15 min on sapphire wafers. Furthermore, a large area transfer of the synthesized thin films to SiO2/Si substrates is achieved. Following this, MoS2and WS2memristors are fabricated that exhibit stable non‐volatile switching and a satisfactory large on/off current ratio (103–105) with good uniformity. Tuning the sulfurization parameters (temperature and metal precursor thickness) is found to be a straightforward and effective strategy to improve the performance of the memristors. The demonstration of large‐scale MoS2and WS2memristors with a one‐step low‐temperature sulfurization method with simple strategy to tuning can lead to potential applications such as flexible memory and neuromorphic computing. 
    more » « less
  3. Neuromorphic computing has the great potential to enable faster and more energy‐efficient computing by overcoming the von Neumann bottleneck. However, most emerging nonvolatile memory (NVM)‐based artificial synapses suffer from insufficient precision, nonlinear synaptic weight update, high write voltage, and high switching latency. Moreover, the spatiotemporal dynamics, an important temporal component for cognitive computing in spiking neural networks (SNNs), are hard to generate with existing complementary metal–oxide–semiconductor (CMOS) devices or emerging NVM. Herein, a three‐terminal, LixWO3‐based electrochemical synapse (LiWES) is developed with low programming voltage (0.2 V), fast programming speed (500 ns), and high precision (1024 states) that is ideal for artificial neural networks applications. Time‐dependent synaptic functions such as paired‐pulse facilitation (PPF) and temporal filtering that are critical for SNNs are also demonstrated. In addition, by leveraging the spike‐encoded timing information extracted from the short‐term plasticity (STP) behavior in the LiWES, an SNNs model is built to benchmark the pattern classification performance of the LiWES, and the result indicates a large boost in classification performance (up to 128×), compared with those NO‐STP synapses. 
    more » « less
  4. Optical reflectance imaging is a popular technique for characterizing 2D materials, thanks to its simplicity and speed of data acquisition. The use of this method for studying interlayer phenomena in stacked 2D layers has, however, remained limited. Here we demonstrate that optical imaging can reveal the nature of interlayer coupling in stacked MoS2and WS2bilayers through their observed reflectance contrast versus the substrate. Successful determination of interlayer coupling requires co-optimization of the illumination wavelength and the thickness of an underlying SiO2film. Our observations are supported by multilayer optical calculations together with an analysis of the effect of any interlayer gap. This approach promises quick characterization of constructed 2D material systems. 
    more » « less
  5. We consider the task of measuring time with probabilistic threshold gates implemented by bio-inspired spiking neurons. In the model of spiking neural networks, network evolves in discrete rounds, where in each round, neurons fire in pulses in response to a sufficiently high membrane potential. This potential is induced by spikes from neighboring neurons that fired in the previous round, which can have either an excitatory or inhibitory effect. Discovering the underlying mechanisms by which the brain perceives the duration of time is one of the largest open enigma in computational neuroscience. To gain a better algorithmic understanding onto these processes, we introduce the neural timer problem. In this problem, one is given a time parameter t, an input neuron x, and an output neuron y. It is then required to design a minimum sized neural network (measured by the number of auxiliary neurons) in which every spike from x in a given round i, makes the output y fire for the subsequent t consecutive rounds.We first consider a deterministic implementation of a neural timer and show that Θ(logt)(deterministic) threshold gates are both sufficient and necessary. This raised the question of whether randomness can be leveraged to reduce the number of neurons. We answer this question in the affirmative by considering neural timers with spiking neurons where the neuron y is required to fire for t consecutive rounds with probability at least 1−δ, and should stop firing after at most 2 t rounds with probability 1−δ for some input parameter δ∈(0,1). Our key result is a construction of a neural timer with O(log log 1/δ) spiking neurons. Interestingly, this construction uses only one spiking neuron, while the remaining neurons can be deterministic threshold gates. We complement this construction with a matching lower bound of Ω(min{log log 1/δ,logt}) neurons. This provides the first separation between deterministic and randomized constructions in the setting of spiking neural networks.Finally, we demonstrate the usefulness of compressed counting networks for synchronizing neural networks. In the spirit of distributed synchronizers [Awerbuch-Peleg, FOCS’90], we provide a general transformation (or simulation) that can take any synchronized network solution and simulate it in an asynchronous setting (where edges have arbitrary response latencies) while incurring a small overhead w.r.t the number of neurons and computation time. 
    more » « less