Abstract Close-in giant exoplanets with temperatures greater than 2,000 K (‘ultra-hot Jupiters’) have been the subject of extensive efforts to determine their atmospheric properties using thermal emission measurements from the Hubble Space Telescope (HST) and Spitzer Space Telescope1–3. However, previous studies have yielded inconsistent results because the small sizes of the spectral features and the limited information content of the data resulted in high sensitivity to the varying assumptions made in the treatment of instrument systematics and the atmospheric retrieval analysis3–12. Here we present a dayside thermal emission spectrum of the ultra-hot Jupiter WASP-18b obtained with the NIRISS13instrument on the JWST. The data span 0.85 to 2.85 μm in wavelength at an average resolving power of 400 and exhibit minimal systematics. The spectrum shows three water emission features (at >6σconfidence) and evidence for optical opacity, possibly attributable to H−, TiO and VO (combined significance of 3.8σ). Models that fit the data require a thermal inversion, molecular dissociation as predicted by chemical equilibrium, a solar heavy-element abundance (‘metallicity’,$${\rm{M/H}}=1.0{3}_{-0.51}^{+1.11}$$ times solar) and a carbon-to-oxygen (C/O) ratio less than unity. The data also yield a dayside brightness temperature map, which shows a peak in temperature near the substellar point that decreases steeply and symmetrically with longitude towards the terminators. 
                        more » 
                        « less   
                    
                            
                            The PEPSI Exoplanet Transit Survey (PETS). II. A Deep Search for Thermal Inversion Agents in KELT-20 b/MASCARA-2 b with Emission and Transmission Spectroscopy*
                        
                    
    
            Abstract Recent observations have shown that the atmospheres of ultrahot Jupiters (UHJs) commonly possess temperature inversions, where the temperature increases with increasing altitude. Nonetheless, which opacity sources are responsible for the presence of these inversions remains largely observationally unconstrained. We used LBT/PEPSI to observe the atmosphere of the UHJ KELT-20 b in both transmission and emission in order to search for molecular agents which could be responsible for the temperature inversion. We validate our methodology by confirming a previous detection of Feiin emission at 16.9σ. Our search for the inversion agents TiO, VO, FeH, and CaH results in non-detections. Using injection-recovery testing we set 4σupper limits upon the volume mixing ratios for these constituents as low as ∼1 × 10−9for TiO. For TiO, VO, and CaH, our limits are much lower than expectations from an equilibrium chemical model, while we cannot set constraining limits on FeH with our data. We thus rule out TiO and CaH as the source of the temperature inversion in KELT-20 b, and VO only if the line lists are sufficiently accurate. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2143400
- PAR ID:
- 10488690
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- AAS Journals
- Date Published:
- Journal Name:
- The Astronomical Journal
- Volume:
- 165
- Issue:
- 4
- ISSN:
- 0004-6256
- Page Range / eLocation ID:
- 157
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            ABSTRACT Most ultra-hot Jupiters (UHJs) show evidence of temperature inversions, in which temperature increases with altitude over a range of pressures. Temperature inversions can occur when there is a species that absorbs the stellar irradiation at a relatively high level of the atmospheres. However, the species responsible for this absorption remains unidentified. In particular, the UHJ KELT-20b is known to have a temperature inversion. Using high resolution emission spectroscopy from LBT/PEPSI we investigate the atomic and molecular opacity sources that may cause the inversion in KELT-20b, as well as explore its atmospheric chemistry. We confirm the presence of Fe i with a significance of 17σ. We also report a tentative 4.3σ detection of Ni i. A nominally 4.5σ detection of Mg i emission in the PEPSI blue arm is likely in fact due to aliasing between the Mg i cross-correlation template and the Fe i lines present in the spectrum. We cannot reproduce a recent detection of Cr i, while we do not have the wavelength coverage to robustly test past detections of Fe ii and Si i. Together with non-detections of molecular species like TiO, this suggests that Fe i is likely to be the dominant optical opacity source in the dayside atmosphere of KELT-20b and may be responsible for the temperature inversion. We explore ways to reconcile the differences between our results and those in literature and point to future paths to understand atmospheric variability.more » « less
- 
            Abstract Differential emission measure (DEM) inversion methods use the brightness of a set of emission lines to infer the line-of-sight (LOS) distribution of the electron temperature (Te) in the corona. DEM inversions have been traditionally performed with collisionally excited lines at wavelengths in the extreme ultraviolet and X-ray. However, such emission is difficult to observe beyond the inner corona (1.5R⊙), particularly in coronal holes. Given the importance of theTedistribution in the corona for exploring the viability of different heating processes, we introduce an analog of the DEM specifically for radiatively excited coronal emission lines, such as those observed during total solar eclipses (TSEs) and with coronagraphs. This radiative-DEM (R-DEM) inversion utilizes visible and infrared emission lines that are excited by photospheric radiation out to at least 3R⊙. Specifically, we use the Fex(637 nm), Fexi(789 nm), and Fexiv(530 nm) coronal emission lines observed during the 2019 July 2 TSE near solar minimum. We find that, despite a largeTespread in the inner corona, the distribution converges to an almost isothermal yet bimodal distribution beyond 1.4R⊙, withTeranging from 1.1 to 1.4 in coronal holes and from 1.4 to 1.65 MK in quiescent streamers. Application of the R-DEM inversion to the Predictive Science Inc. magnetohydrodynamic simulation for the 2019 eclipse validates the R-DEM method and yields a similar LOSTedistribution to the eclipse data.more » « less
- 
            A<sc>bstract</sc> A search is presented for the resonant production of a pair of standard model-like Higgs bosons using data from proton-proton collisions at a centre-of-mass energy of 13 TeV, collected by the CMS experiment at the CERN LHC in 2016–2018, corresponding to an integrated luminosity of 138 fb−1. The final state consists of two b quark-antiquark pairs. The search is conducted in the region of phase space where at least one of the pairs is highly Lorentz-boosted and is reconstructed as a single large-area jet. The other pair may be either similarly merged or resolved, the latter reconstructed using two b-tagged jets. The data are found to be consistent with standard model processes and are interpreted as 95% confidence level upper limits on the product of the cross sections and the branching fractions of the spin-0 radion and the spin-2 bulk graviton that arise in warped extradimensional models. The limits set are in the range 9.74–0.29 fb and 4.94–0.19 fb for a narrow radion and a graviton, respectively, with masses between 1 and 3 TeV. For a radion and for a bulk graviton with widths 10% of their masses, the limits are in the range 12.5–0.35 fb and 8.23–0.23 fb, respectively, for the same masses. These limits result in the exclusion of a narrow-width graviton with a mass below 1.2 TeV, and of narrow and 10%-width radions with masses below 2.6, and 2.9 TeV, respectively.more » « less
- 
            A<sc>bstract</sc> We report a search for the charged-lepton flavor violation in Υ(2S) →ℓ∓τ±(ℓ=e, μ) decays using a 25 fb−1Υ(2S) sample collected by the Belle detector at the KEKBe+e−asymmetric-energy collider. We find no evidence for a signal and set upper limits on the branching fractions ($$ \mathcal{B} $$ ) at 90% confidence level. We obtain the most stringent upper limits:$$ \mathcal{B} $$ (Υ(2S)→ μ∓τ±)<0.23×10−6and$$ \mathcal{B} $$ (Υ(2S)→ e∓τ±)<1.12×10−6.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    