skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Speciation and Structures in Pt Surface Sites Stabilized by N-Heterocyclic Carbene Ligands Revealed by Dynamic Nuclear Polarization Enhanced Indirectly Detected 195 Pt NMR Spectroscopic Signatures and Fingerprint Analysis
N-Heterocyclic carbenes (NHCs) are widely used ligands in transition metal catalysis. Notably, they are increasingly encountered in heterogeneous systems. While a detailed knowledge of the possibly multiple metal environments would be essential to understand the activity of metal-NHC-based heterogeneous catalysts, only a few techniques currently have the ability to describe with atomic-resolution structures dispersed on a solid support. Here, we introduce a new dynamic nuclear polarization (DNP) surface-enhanced solid-state nuclear magnetic resonance (NMR) approach that, in combination with advanced density functional theory (DFT) calculations, allows the structure characterization of isolated silica-supported Pt-NHC sites. Notably, we demonstrate that the signal amplification provided by DNP in combination with fast magic angle spinning enables the implementation of sensitive 13C-195Pt correlation experiments. By exploiting 1J(13C-195Pt) couplings, 2D NMR spectra were acquired, revealing two types of Pt sites. For each of them, 1J(13C-195Pt) value was determined as well as 195Pt chemical shift tensor parameters. To interpret the NMR data, DFT calculations were performed on an extensive library of molecular Pt-NHC complexes. While one surface site was identified as a bis-NHC compound, the second site most likely contains a bidentate 1,5-cyclooctadiene ligand, pointing to various parallel grafting mechanisms. The methodology described here represents a new step forward in the atomic-level description of catalytically relevant surface metal-NHC complexes. In particular, it opens up innovative avenues for exploiting the spectral signature of platinum, one of the most widely used transition metals in catalysis, but whose use for solid-state NMR remains difficult. Our results also highlight the sensitivity of 195Pt NMR parameters to slight structural changes.  more » « less
Award ID(s):
1916809
PAR ID:
10488832
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Journal of the American Chemical Society
Volume:
144
Issue:
47
ISSN:
0002-7863
Page Range / eLocation ID:
21530 to 21543
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    An ab initio molecular dynamics investigation of the solvent effect (water) on the structural parameters, 195 Pt NMR spin–spin coupling constants (SSCCs) and chemical shifts of a series of pyridonate-bridged Pt III dinuclear complexes is performed using Kohn–Sham (KS) Car–Parrinello molecular dynamics (CPMD) and relativistic hybrid KS NMR calculations. The indirect solvent effect ( via structural changes) has a dramatic effect on the 1 J PtPt SSCCs. The complexes exhibit a strong trans influence in solution, where the Pt–Pt bond lengthens with increasing axial ligand σ-donor strength. In the diaqua complex, where the solvent effect is more pronounced, the SSCCs averaged for CPMD configurations with explicit plus implicit solvation agree much better with the experimental data, while the calculations for static geometry and CPMD unsolvated configurations show large deviations with respect to experiment. The combination of CPMD with hybrid KS NMR calculations provides a much more realistic computational model that reproduces the large magnitudes of 1 J PtPt and 195 Pt chemical shifts. An analysis of 1 J PtPt in terms of localized and canonical orbitals shows that the SSCCs are driven by changes in the s-character of the natural atomic orbitals of Pt atoms, which affect the 'Fermi contact' mechanism. 
    more » « less
  2. Periodic Density Functional Theory calculations reveal the potential application of 10 imidazole based N-heterocyclic carbenes (NHCs) to behave as “molecular corks” for hydrogen storage on single atom alloys, comprised of Pd/Cu(111) or Pt/Cu(111). Calculations show that functionalizing the NHC with different electron withdrawing/donating functional groups results in different binding energies of the NHC with the alloy surfaces. The results are compared to DFT calculations of carbon monoxide bound to these alloys. The Huynh electronic parameter (HEP) is calculated for several simple imidazole NHCs to gauge σ-donor ability, while Se-NMR and P-NMR calculations of selenourea derivatives and carbene-phosphinidene adducts, respectively, have been utilized to gauge π-acidity of the NHCs. It is demonstrated that consideration of both σ and π donating/accepting ability must be considered when predicting the surface-adsorbate binding energy. It was found that electron withdrawing groups tend to weaken the NHC-surface interaction while electron donating substituents tend to strengthen the interaction. 
    more » « less
  3. Periodic Density Functional Theory calculations reveal the potential application of 10 imidazole based N-heterocyclic carbenes to behave as “molecular corks” for hydrogen storage on single atom alloys, comprised of Pd/Cu(111) or Pt/Cu(111). Calculations show that functionalizing the NHC with different electron withdrawing/donating functional groups results in different binding energies of the NHC with the alloy surfaces. The results are compared to DFT calculations of carbon monoxide bound to these alloys. The Huynh electronic parameter (is calculated for several simple imidazole NHCs to gauge σ-donor ability, while Se-NMR of and P-NMR calculations of selenourea derivatives and carbene-phosphinidene adducts, respectively, have been utilized to gauge π-acidity of the NHCs. It is demonstrated that consideration of both σ and π donating/accepting ability must be considered when predicting the surface-adsorbate binding energy. It was found that electron withdrawing groups tend to weaken the NHC-surface interaction while electron withdrawing substituents tend to strengthen the interaction. 
    more » « less
  4. Dynamic nuclear polarization (DNP) is widely used to enhance solid state nuclear magnetic resonance (NMR) sensitivity. Its efficiency as a generic signal-enhancing approach for liquid state NMR, however, decays rapidly with magnetic field B 0 , unless mediated by scalar interactions arising only in exceptional cases. This has prevented a more widespread use of DNP in structural and dynamical solution NMR analyses. This study introduces a potential solution to this problem, relying on biradicals with exchange couplings J ex of the order of the electron Larmor frequency ω E . Numerical and analytical calculations show that in such J ex ≈ ± ω E cases a phenomenon akin to that occurring in chemically induced DNP (CIDNP) happens, leading to different relaxation rates for the biradical singlet and triplet states which are hyperfine-coupled to the nuclear α or β states. Microwave irradiation can then generate a transient nuclear polarization build-up with high efficiency, at all magnetic fields that are relevant in contemporary NMR, and for all rotational diffusion correlation times that occur in small- and medium-sized molecules in conventional solvents. 
    more » « less
  5. Dynamic Nuclear Polarization (DNP) can increase the sensitivity of Nuclear Magnetic Resonance (NMR), but it is challenging in the liquid state at high magnetic fields. In this study we demonstrate significant enhancements of NMR signals (up to 70 on 13C) in the liquid state by scalar Overhauser DNP at 14.1 T, with high resolution (~0.1 ppm) and relatively large sample volume (~100 µL). 
    more » « less