skip to main content


Title: Speciation and Structures in Pt Surface Sites Stabilized by N-Heterocyclic Carbene Ligands Revealed by Dynamic Nuclear Polarization Enhanced Indirectly Detected 195 Pt NMR Spectroscopic Signatures and Fingerprint Analysis
N-Heterocyclic carbenes (NHCs) are widely used ligands in transition metal catalysis. Notably, they are increasingly encountered in heterogeneous systems. While a detailed knowledge of the possibly multiple metal environments would be essential to understand the activity of metal-NHC-based heterogeneous catalysts, only a few techniques currently have the ability to describe with atomic-resolution structures dispersed on a solid support. Here, we introduce a new dynamic nuclear polarization (DNP) surface-enhanced solid-state nuclear magnetic resonance (NMR) approach that, in combination with advanced density functional theory (DFT) calculations, allows the structure characterization of isolated silica-supported Pt-NHC sites. Notably, we demonstrate that the signal amplification provided by DNP in combination with fast magic angle spinning enables the implementation of sensitive 13C-195Pt correlation experiments. By exploiting 1J(13C-195Pt) couplings, 2D NMR spectra were acquired, revealing two types of Pt sites. For each of them, 1J(13C-195Pt) value was determined as well as 195Pt chemical shift tensor parameters. To interpret the NMR data, DFT calculations were performed on an extensive library of molecular Pt-NHC complexes. While one surface site was identified as a bis-NHC compound, the second site most likely contains a bidentate 1,5-cyclooctadiene ligand, pointing to various parallel grafting mechanisms. The methodology described here represents a new step forward in the atomic-level description of catalytically relevant surface metal-NHC complexes. In particular, it opens up innovative avenues for exploiting the spectral signature of platinum, one of the most widely used transition metals in catalysis, but whose use for solid-state NMR remains difficult. Our results also highlight the sensitivity of 195Pt NMR parameters to slight structural changes.  more » « less
Award ID(s):
1916809
NSF-PAR ID:
10488832
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Journal of the American Chemical Society
Volume:
144
Issue:
47
ISSN:
0002-7863
Page Range / eLocation ID:
21530 to 21543
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    An ab initio molecular dynamics investigation of the solvent effect (water) on the structural parameters, 195 Pt NMR spin–spin coupling constants (SSCCs) and chemical shifts of a series of pyridonate-bridged Pt III dinuclear complexes is performed using Kohn–Sham (KS) Car–Parrinello molecular dynamics (CPMD) and relativistic hybrid KS NMR calculations. The indirect solvent effect ( via structural changes) has a dramatic effect on the 1 J PtPt SSCCs. The complexes exhibit a strong trans influence in solution, where the Pt–Pt bond lengthens with increasing axial ligand σ-donor strength. In the diaqua complex, where the solvent effect is more pronounced, the SSCCs averaged for CPMD configurations with explicit plus implicit solvation agree much better with the experimental data, while the calculations for static geometry and CPMD unsolvated configurations show large deviations with respect to experiment. The combination of CPMD with hybrid KS NMR calculations provides a much more realistic computational model that reproduces the large magnitudes of 1 J PtPt and 195 Pt chemical shifts. An analysis of 1 J PtPt in terms of localized and canonical orbitals shows that the SSCCs are driven by changes in the s-character of the natural atomic orbitals of Pt atoms, which affect the 'Fermi contact' mechanism. 
    more » « less
  2. Ultrafast excited state processes of transition metal complexes (TMCs) are governed by complicated interplays between electronic and nuclear dynamics, which demand a detailed understanding to achieve optimal functionalities of photoactive TMC-based materials for many applications. In this work, we investigated a cyclometalated platinum( ii ) dimer known to undergo a Pt–Pt bond contraction in the metal–metal-to-ligand-charge-transfer (MMLCT) excited state using femtosecond broadband transient absorption (fs-BBTA) spectroscopy in combination with geometry optimization and normal mode calculations. Using a sub-20 fs pump and broadband probe pulses in fs-BBTA spectroscopy, we were able to correlate the coherent vibrational wavepacket (CVWP) evolution with the stimulated emission (SE) dynamics of the 1 MMLCT state. The results demonstrated that the 145 cm −1 CVWP motions with the damping times of ∼0.9 ps and ∼2 ps originate from coherent Pt–Pt stretching vibrations in the singlet and triplet MMLCT states, respectively. On the basis of excited state potential energy surface calculations in our previous work, we rationalized that the CVWP transfer from the Franck–Condon (FC) state to the 3 MMLCT state was mediated by a triplet ligand-centered ( 3 LC) intermediate state through two step intersystem crossing (ISC) on a time scale shorter than a period of the Pt–Pt stretching wavepacket motions. Moreover, it was found that the CVWP motion had 110 cm −1 frequency decays with the damping time of ∼0.2 ps, matching the time constant of 0.253 ps, corresponding to a redshift in the SE feature at early times. This observation indicates that the Pt–Pt bond contraction changes the stretching frequency from 110 to 145 cm −1 and stabilizes the 1 MMLCT state relative to the 3 LC state with a ∼0.2 ps time scale. Thus, the ultrafast ISC from the 1 MMLCT to the 3 LC states occurs before the Pt–Pt bond shortening. The findings herein provide insight into understanding the impact of Pt–Pt bond contraction on the ultrafast branching of the 1 MMLCT population into the direct ( 1 MMLCT → 3 MMLCT) and indirect ISC pathways ( 1 MMLCT → 3 LC → 3 MMLCT) in the Pt( ii ) dimer. These results revealed intricate excited state electronic and nuclear motions that could steer the reaction pathways with a level of detail that has not been achieved before. 
    more » « less
  3. Periodic Density Functional Theory calculations reveal the potential application of 10 imidazole based N-heterocyclic carbenes to behave as “molecular corks” for hydrogen storage on single atom alloys, comprised of Pd/Cu(111) or Pt/Cu(111). Calculations show that functionalizing the NHC with different electron withdrawing/donating functional groups results in different binding energies of the NHC with the alloy surfaces. The results are compared to DFT calculations of carbon monoxide bound to these alloys. The Huynh electronic parameter (is calculated for several simple imidazole NHCs to gauge σ-donor ability, while Se-NMR of and P-NMR calculations of selenourea derivatives and carbene-phosphinidene adducts, respectively, have been utilized to gauge π-acidity of the NHCs. It is demonstrated that consideration of both σ and π donating/accepting ability must be considered when predicting the surface-adsorbate binding energy. It was found that electron withdrawing groups tend to weaken the NHC-surface interaction while electron withdrawing substituents tend to strengthen the interaction. 
    more » « less
  4. Periodic Density Functional Theory calculations reveal the potential application of 10 imidazole based N-heterocyclic carbenes (NHCs) to behave as “molecular corks” for hydrogen storage on single atom alloys, comprised of Pd/Cu(111) or Pt/Cu(111). Calculations show that functionalizing the NHC with different electron withdrawing/donating functional groups results in different binding energies of the NHC with the alloy surfaces. The results are compared to DFT calculations of carbon monoxide bound to these alloys. The Huynh electronic parameter (HEP) is calculated for several simple imidazole NHCs to gauge σ-donor ability, while Se-NMR and P-NMR calculations of selenourea derivatives and carbene-phosphinidene adducts, respectively, have been utilized to gauge π-acidity of the NHCs. It is demonstrated that consideration of both σ and π donating/accepting ability must be considered when predicting the surface-adsorbate binding energy. It was found that electron withdrawing groups tend to weaken the NHC-surface interaction while electron donating substituents tend to strengthen the interaction. 
    more » « less
  5. Abstract

    Solid‐state NMR measurements coupled with density functional theory (DFT) calculations demonstrate how hydrogen positions can be refined in a crystalline system. The precision afforded by rotational‐echo double‐resonance (REDOR) NMR to interrogate13C–1H distances is exploited along with DFT determinations of the13C tensor of carbonates (CO32−). Nearby1H nuclei perturb the axial symmetry of the carbonate sites in the hydrated carbonate mineral, hydromagnesite [4 MgCO3⋅Mg(OH)2⋅4 H2O]. A match between the calculated structure and solid‐state NMR was found by testing multiple semi‐local and dispersion‐corrected DFT functionals and applying them to optimize atom positions, starting from X‐ray diffraction (XRD)‐determined atomic coordinates. This was validated by comparing calculated to experimental13C{1H} REDOR and13C chemical shift anisotropy (CSA) tensor values. The results show that the combination of solid‐state NMR, XRD, and DFT can improve structure refinement for hydrated materials.

     
    more » « less