skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The influence of the number and distribution of background points in presence-background species distribution models
Species distribution models (SDMs), which relate recorded observations (presences) and absences or background points to environmental characteristics, are powerful tools used to generate hypotheses about the biogeography, ecology, and conservation of species. Although many researchers have examined the effects of presence and background point distributions on model outputs, they have not systematically evaluated the effects of various methods of background point sampling on the performance of a single model algorithm across many species. Therefore, a consensus on the preferred methods of background point sampling is lacking. Here, we conducted presence-background SDMs for 20 vertebrate species in North America under a variety of background point conditions, varying the number of background points used, the size of the buffer used to constrain the background points around the occurrences, and the percentage of background points sampled within the buffer (“spatial weighting”). We evaluated the accuracy and transferability of the models using Boyce index, overlap with expert-generated range maps, and area overpredicted and underpredicted by the SDM (and AUC for comparability with other studies). SDM performance is highly dependent on the species modelled but is affected by the number and spread of background points. Models with little spatial weighting had high accuracy (overlap values), but extreme extrapolation errors and overprediction. In contrast, SDMs with high transferability (high Boyce index values and low overprediction) had moderate-to-high spatial weighting. These results emphasize the importance of both background points and evaluation metric selection in SDMs. For other, more successful metrics, using many background points with spatial weighting may be preferred for models with large extents. These results can assist researchers in selecting the background point parameters most relevant for their research question, allowing them to fine-tune their hypotheses on the distribution of species through space and time.  more » « less
Award ID(s):
1945013
PAR ID:
10488887
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier B.V.
Date Published:
Journal Name:
Ecological Modelling
Volume:
488
Issue:
C
ISSN:
0304-3800
Page Range / eLocation ID:
110604
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Species distribution models (SDMs) have become increasingly popular for making ecological inferences, as well as predictions to inform conservation and management. In predictive modeling, practitioners often use correlative SDMs that only evaluate a single spatial scale and do not account for differences in life stages. These modeling decisions may limit the performance of SDMs beyond the study region or sampling period. Given the increasing desire to develop transferable SDMs, a robust framework is necessary that can account for known challenges of model transferability. Here, we propose a comparative framework to develop transferable SDMs, which was tested using satellite telemetry data from green turtles (Chelonia mydas). This framework is characterized by a set of steps comparing among different models based on (1) model algorithm (e.g., generalized linear model vs. Gaussian process regression) and formulation (e.g., correlative model vs. hybrid model), (2) spatial scale, and (3) accounting for life stage. SDMs were fitted as resource selection functions and trained on data from the Gulf of Mexico with bathymetric depth, net primary productivity, and sea surface temperature as covariates. Independent validation datasets from Brazil and Qatar were used to assess model transferability. A correlative SDM using a hierarchical Gaussian process regression (HGPR) algorithm exhibited greater transferability than a hybrid SDM using HGPR, as well as correlative and hybrid forms of hierarchical generalized linear models. Additionally, models that evaluated habitat selection at the finest spatial scale and that did not account for life stage proved to be the most transferable in this study. The comparative framework presented here may be applied to a variety of species, ecological datasets (e.g., presence‐only, presence‐absence, mark‐recapture), and modeling frameworks (e.g., resource selection functions, step selection functions, occupancy models) to generate transferable predictions of species–habitat associations. We expect that SDM predictions resulting from this comparative framework will be more informative management tools and may be used to more accurately assess climate change impacts on a wide array of taxa. 
    more » « less
  2. Abstract AimSpecies distribution models (SDMs) that integrate presence‐only and presence–absence data offer a promising avenue to improve information on species' geographic distributions. The use of such ‘integrated SDMs’ on a species range‐wide extent has been constrained by the often limited presence–absence data and by the heterogeneous sampling of the presence‐only data. Here, we evaluate integrated SDMs for studying species ranges with a novel expert range map‐based evaluation. We build new understanding about how integrated SDMs address issues of estimation accuracy and data deficiency and thereby offer advantages over traditional SDMs. LocationSouth and Central America. Time Period1979–2017. Major Taxa StudiedHummingbirds. MethodsWe build integrated SDMs by linking two observation models – one for each data type – to the same underlying spatial process. We validate SDMs with two schemes: (i) cross‐validation with presence–absence data and (ii) comparison with respect to the species' whole range as defined with IUCN range maps. We also compare models relative to the estimated response curves and compute the association between the benefit of the data integration and the number of presence records in each data set. ResultsThe integrated SDM accounting for the spatially varying sampling intensity of the presence‐only data was one of the top performing models in both model validation schemes. Presence‐only data alleviated overly large niche estimates, and data integration was beneficial compared to modelling solely presence‐only data for species which had few presence points when predicting the species' whole range. On the community level, integrated models improved the species richness prediction. Main ConclusionsIntegrated SDMs combining presence‐only and presence–absence data are successfully able to borrow strengths from both data types and offer improved predictions of species' ranges. Integrated SDMs can potentially alleviate the impacts of taxonomically and geographically uneven sampling and to leverage the detailed sampling information in presence–absence data. 
    more » « less
  3. Summary Anthropogenetic climate change has caused range shifts among many species. Species distribution models (SDMs) are used to predict how species ranges may change in the future. However, most SDMs rarely consider how climate‐sensitive traits, such as phenology, which affect individuals' demography and fitness, may influence species' ranges.Using > 120 000 herbarium specimens representing 360 plant species distributed across the eastern United States, we developed a novel ‘phenology‐informed’ SDM that integrates phenological responses to changing climates. We compared the ranges of each species forecast by the phenology‐informed SDM with those from conventional SDMs. We further validated the modeling approach using hindcasting.When examining the range changes of all species, our phenology‐informed SDMs forecast less species loss and turnover under climate change than conventional SDMs. These results suggest that dynamic phenological responses of species may help them adjust their ecological niches and persist in their habitats as the climate changes.Plant phenology can modulate species' responses to climate change, mitigating its negative effects on species persistence. Further application of our framework will contribute to a generalized understanding of how traits affect species distributions along environmental gradients and facilitate the use of trait‐based SDMs across spatial and taxonomic scales. 
    more » « less
  4. Species distribution and ecological niche models (hereafter SDMs) are popular tools with broad applications in ecology, biodiversity conservation, and environmental science. Many SDM applications require projecting models in environmental conditions non‐analog to those used for model training (extrapolation), giving predictions that may be statistically unsupported and biologically meaningless. We introduce a novel method, Shape, a model‐agnostic approach that calculates the extrapolation degree for a given projection data point by its multivariate distance to the nearest training data point. Such distances are relativized by a factor that reflects the dispersion of the training data in environmental space. Distinct from other approaches, Shape incorporates an adjustable threshold to control the binary discrimination between acceptable and unacceptable extrapolation degrees. We compared Shape's performance to five extrapolation metrics based on their ability to detect analog environmental conditions in environmental space and improve SDMs suitability predictions. To do so, we used 760 virtual species to define different modeling conditions determined by species niche tolerance, distribution equilibrium condition, sample size, and algorithm. All algorithms had trouble predicting species niches. However, we found a substantial improvement in model predictions when model projections were truncated independently of extrapolation metrics. Shape's performance was dependent on extrapolation threshold used to truncate models. Because of this versatility, our approach showed similar or better performance than the previous approaches and could better deal with all modeling conditions and algorithms. Our extrapolation metric is simple to interpret, captures the complex shapes of the data in environmental space, and can use any extrapolation threshold to define whether model predictions are retained based on the extrapolation degrees. These properties make this approach more broadly applicable than existing methods for creating and applying SDMs. We hope this method and accompanying tools support modelers to explore, detect, and reduce extrapolation errors to achieve more reliable models. Keywords: environmental novelty, extrapolation, Mahalanobis distance, model prediction, non‐analog environmental data, transferability 
    more » « less
  5. Dar, Kamran Shaukat (Ed.)
    Species distribution models (SDMs) are increasingly popular tools for profiling disease risk in ecology, particularly for infectious diseases of public health importance that include an obligate non-human host in their transmission cycle. SDMs can create high-resolution maps of host distribution across geographical scales, reflecting baseline risk of disease. However, as SDM computational methods have rapidly expanded, there are many outstanding methodological questions. Here we address key questions about SDM application, using schistosomiasis risk in Brazil as a case study. Schistosomiasis is transmitted to humans through contact with the free-living infectious stage ofSchistosomaspp. parasites released from freshwater snails, the parasite’s obligate intermediate hosts. In this study, we compared snail SDM performance across machine learning (ML) approaches (MaxEnt, Random Forest, and Boosted Regression Trees), geographic extents (national, regional, and state), types of presence data (expert-collected and publicly-available), and snail species (Biomphalaria glabrata,B.straminea, andB.tenagophila). We used high-resolution (1km) climate, hydrology, land-use/land-cover (LULC), and soil property data to describe the snails’ ecological niche and evaluated models on multiple criteria. Although all ML approaches produced comparable spatially cross-validated performance metrics, their suitability maps showed major qualitative differences that required validation based on local expert knowledge. Additionally, our findings revealed varying importance of LULC and bioclimatic variables for different snail species at different spatial scales. Finally, we found that models using publicly-available data predicted snail distribution with comparable AUC values to models using expert-collected data. This work serves as an instructional guide to SDM methods that can be applied to a range of vector-borne and zoonotic diseases. In addition, it advances our understanding of the relevant environment and bioclimatic determinants of schistosomiasis risk in Brazil. 
    more » « less