skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Flexible Runtime Security Enforcement with Tagged C
We introduce Tagged C, a novel C variant with built-in tag- based reference monitoring that can be enforced by hardware mecha- nisms such as the PIPE (Processor Interlocks for Policy Enforcement) processor extension. Tagged C expresses security policies at the level of C source code. It is designed to express a variety of dynamic security poli- cies, individually or in combination, and enforce them with compiler and hardware support. Tagged C supports multiple approaches to security and varying levels of strictness. We demonstrate this range by providing examples of memory safety, compartmentalization, and secure informa- tion flow policies. We also give a full formalized semantics and a reference interpreter for Tagged C.  more » « less
Award ID(s):
2048499
PAR ID:
10489171
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Runtime Verification 23rd International Conference, RV 2023
Format(s):
Medium: X
Location:
Thessaloniki, Greece
Sponsoring Org:
National Science Foundation
More Like this
  1. Heterogeneous CPU-FPGA systems have been shown to achieve significant performance gains in domain-specific computing. However, contrary to the huge efforts invested on the performance acceleration, the community has not yet investigated the security consequences due to incorporating FPGA into the traditional CPU-based architecture. In fact, the interplay between CPU and FPGA in such a heterogeneous system may introduce brand new attack surfaces if not well controlled. We propose a hardware isolation-based secure architecture, namely HISA, to mitigate the identified new threats. HISA extends the CPU-based hardware isolation primitive to the heterogeneous FPGA components and achieves security guarantees by enforcing two types of security policies in the isolated secure environment, namely the access control policy and the output verification policy. We evaluate HISA using four reference FPGA IP cores together with a variety of reference security policies targeting representative CPU-FPGA attacks. Our implementation and experiments on real hardware prove that HISA is an effective security complement to the existing CPU-only and FPGA-only secure architectures. 
    more » « less
  2. null (Ed.)
    With Heterogeneous architectures and IoT devices connecting to billions of devices in the network, securing the application and tracking the data flow from different untrusted communication channels during run time and protecting the return address is an essential aspect of system integrity. In this work, we propose a correlated hardware and software-based information flow tracking mechanism to track the data using tagged logic. This scheme leverages the open-source benefits of RISC V by extending the architecture with security policies providing precise coarse grain management along with a simulation model with minimal overhead. 
    more » « less
  3. Dependent security labels (security labels that depend on program states) in various forms have been introduced to express rich information flow policies. They are shown to be essential in the verification of real-world software and hardware systems such as conference management systems, Android Apps, a MIPS processor and a TrustZone-like architecture. However, most work assumes that all (complex) labels are provided manually, which can both be error-prone and time-consuming. In this paper, we tackle the problem of automatic label inference for static information flow analyses with dependent security labels. In particular, we propose the first general framework to facilitate the design and validation (in terms of soundness and/or completeness) of inference algorithms. The framework models label inference as constraint solving and offers guidelines for sound and/or complete constraint solving. Under the framework, we propose novel constraint solving algorithms that are both sound and complete. Evaluation result on sets of constraints generated from secure and insecure variants of a MIPS processor suggests that the novel algorithms improve the performance of an existing algorithm by orders of magnitude and offers better scalability. 
    more » « less
  4. Attacks which combine software vulnerabilities and hardware vulnerabilities are emerging security problems. Although the runtime verification or remote attestation can determine the correctness of a system, existing methods suffer from inflexible security policy setup and high performance overheads. Meanwhile, they rarely focus on addressing the threat in the RISC-V architecture, which provides an open Instruction Set Architecture (ISA) of the processsor. In this paper, we propose a comprehensive software and hardware co-verification method to protect the entire RISC-V system in the runtime. The proposed method adopts the Dynamic Information Flow Tracking (DIFT) framework to implement a new Verifier and Prover security architecture for supporting runtime software and hardware coverification. We realize a FPGA prototype on the Rocket-Chip, an RISC-V open-source processor core. The framework is implemented as a co-processor which do not change the architecture of main processor core and the new security architecture can be integrated with other RISC-V processors. 
    more » « less
  5. In this paper, we propose a new secure machine learning inference platform assisted by a small dedicated security processor, which will be easier to protect and deploy compared to today's TEEs integrated into high-performance processors. Our platform provides three main advantages over the state-of-the-art: (i) We achieve significant performance improvements compared to state-of-the-art distributed Privacy-Preserving Machine Learning (PPML) protocols, with only a small security processor that is comparable to a discrete security chip such as the Trusted Platform Module (TPM) or on-chip security subsystems in SoCs similar to the Apple enclave processor. In the semi-honest setting with WAN/GPU, our scheme is 4X-63X faster than Falcon (PoPETs'21) and AriaNN (PoPETs'22) and 3.8X-12X more communication efficient. We achieve even higher performance improvements in the malicious setting. (ii) Our platform guarantees security with abort against malicious adversaries under honest majority assumption. (iii) Our technique is not limited by the size of secure memory in a TEE and can support high-capacity modern neural networks like ResNet18 and Transformer. While previous work investigated the use of high-performance TEEs in PPML, this work represents the first to show that even tiny secure hardware with very limited performance can be leveraged to significantly speed-up distributed PPML protocols if the protocol can be carefully designed for lightweight trusted hardware. 
    more » « less