skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optogenetic clustering and membrane translocation of the BcLOV4 photoreceptor
Optogenetic tools respond to light through one of a small number of behaviors including allosteric changes, dimerization, clustering, or membrane translocation. Here, we describe a new class of optogenetic actuator that simultaneously clusters and translocates to the plasma membrane in response to blue light. We demonstrate that dual translocation and clustering of the BcLOV4 photoreceptor can be harnessed for novel single-component optogenetic tools, including for control of the entire family of epidermal growth factor receptor (ErbB1-4) tyrosine kinases. We further find that clustering and membrane translocation are mechanistically linked. Stronger clustering increased the magnitude of translocation and downstream signaling, increased sensitivity to light by ~threefold-to-fourfold, and decreased the expression levels needed for strong signal activation. Thus light-induced clustering of BcLOV4 provides a strategy to generate a new class of optogenetic tools and to enhance existing ones.  more » « less
Award ID(s):
2145699
PAR ID:
10489299
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences USA
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
120
Issue:
32
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report the construction of a single-component optogenetic Rac1 (opto-Rac1) to control actin polymerization by dynamic membrane recruitment. Opto-Rac1 is a fusion of wildtype human Rac1 small GTPase to the C-terminal region of BcLOV4, a LOV (light-oxygen-voltage) photoreceptor that rapidly binds the plasma membrane upon blue-light activation via a direct electrostatic interaction with anionic membrane phospholipids. Translocation of the fused wildtype Rac1 effector permits its activation by GEFs (guanine nucleotide exchange factors) and consequent actin polymerization and lamellipodia formation, unlike in existing single-chain systems that operate by allosteric photo-switching of constitutively active Rac1 or the heterodimerization-based ( i.e. two-component) membrane recruitment of a Rac1-activating GEF. Opto-Rac1 induction of lamellipodia formation was spatially restricted to the patterned illumination field and was efficient, requiring sparse stimulation duty ratios of ∼1–2% (at the sensitivity threshold for flavin photocycling) to cause significant changes in cell morphology. This work exemplifies how the discovery of LOV proteins of distinct signal transmission modes can beget new classes of optogenetic tools for controlling cellular function. 
    more » « less
  2. Abstract Since the neurobiological inception of optogenetics, light‐controlled molecular perturbations have been applied in many scientific disciplines to both manipulate and observe cellular function. Proteins exhibiting light‐sensitive conformational changes provide researchers with avenues for spatiotemporal control over the cellular environment and serve as valuable alternatives to chemically inducible systems. Optogenetic approaches have been developed to target proteins to specific subcellular compartments, allowing for the manipulation of nuclear translocation and plasma membrane morphology. Additionally, these tools have been harnessed for molecular interrogation of organelle function, location, and dynamics. Optogenetic approaches offer novel ways to answer fundamental biological questions and to improve the efficiency of bioengineered cell factories by controlling the assembly of synthetic organelles. This review first provides a summary of available optogenetic systems with an emphasis on their organelle‐specific utility. It then explores the strategies employed for organelle targeting and concludes by discussing our perspective on the future of optogenetics to control subcellular structure and organization. This article is categorized under:Metabolic Diseases > Molecular and Cellular Physiology 
    more » « less
  3. Abstract Optogenetic tools are created to control RhoA GTPase, a central regulator of actin organization and actomyosin contractility. RhoA GTPase, or its upstream activator ARHGEF11, is fused to BcLOV4, a photoreceptor that can be dynamically recruited to the plasma membrane by a light‐regulated protein‐lipid electrostatic interaction with the inner leaflet. Direct membrane recruitment of these proteins induces potent contractile signaling sufficient to separate adherens junctions with as little as one pulse of blue light. Induced cytoskeletal morphology changes are dependent on the alignment of the spatially patterned stimulation with the underlying cell polarization. RhoA‐mediated cytoskeletal activation drives yes‐associated protein (YAP) nuclear localization within minutes and consequent mechanotransduction verified by YAP‐transcriptional enhanced associate domain transcriptional activity. These single‐transgene tools do not require protein binding partners for dynamic membrane localization and permit spatiotemporally precise control over RhoA signaling to advance the study of its diverse regulatory roles in cell migration, morphogenesis, and cell cycle maintenance. 
    more » « less
  4. Ionic conductivity and membrane capacitance are two foundational parameters that govern neuron excitability. Conventional optogenetics has emerged as a powerful tool to temporarily manipulate membrane ionic conductivity in intact biological systems. However, no analogous method exists for precisely manipulating cell membrane capacitance to enable long-lasting modulation of neuronal excitability. Genetically targetable chemical assembly of conductive and insulating polymers can modulate cell membrane capacitance, but further development of this technique has been hindered by poor spatiotemporal control of the polymer deposition and cytotoxicity from the widely diffused peroxide. We address these issues by harnessing genetically targetable photosensitizer proteins to assemble electrically functional polymers in neurons with precise spatiotemporal control. Using whole-cell patch-clamp recordings, we demonstrate that this optogenetic polymerization can achieve stepwise modulation of both neuron membrane capacitance and intrinsic excitability. Furthermore, cytotoxicity can be limited by controlling light exposure, demonstrating a promising new method for precisely modulating cell excitability. 
    more » « less
  5. Abstract Necroptosis is a form of inflammatory lytic cell death involving active cytokine production and plasma membrane rupture. Progression of necroptosis is tightly regulated in time and space, and its signaling outcomes can shape the local inflammatory environment of cells and tissues. Pharmacological induction of necroptosis is well established, but the diffusive nature of chemical death inducers makes it challenging to study cell‐cell communication precisely during necroptosis. Receptor‐interacting protein kinase 3, or RIPK3, is a crucial signaling component of necroptosis, acting as a crucial signaling node for both canonical and non‐canonical necroptosis. RIPK3 oligomerization is crucial to the formation of the necrosome, which regulates plasma membrane rupture and cytokine production. Commonly used necroptosis inducers can activate multiple downstream signaling pathways, confounding the signaling outcomes of RIPK3‐mediated necroptosis. Opsin‐free optogenetic techniques may provide an alternative strategy to address this issue. Optogenetics uses light‐sensitive protein‐protein interaction to modulate cell signaling. Compared to chemical‐based approaches, optogenetic strategies allow for spatiotemporal modulation of signal transduction in live cells and animals. We developed an optogenetic system that allows for ligand‐free optical control of RIPK3 oligomerization and necroptosis. This article describes the sample preparation, experimental setup, and optimization required to achieve robust optogenetic induction of RIPK3‐mediated necroptosis in colorectal HT‐29 cells. We expect that this optogenetic system could provide valuable insights into the dynamic nature of lytic cell death. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Production of lentivirus encoding the optogenetic RIPK3 system Support Protocol: Quantification of the titer of lentivirus Basic Protocol 2: Culturing, chemical transfection, and lentivirus transduction of HT‐29 cells Basic Protocol 3: Optimization of optogenetic stimulation conditions Basic Protocol 4: Time‐stamped live‐cell imaging of HT‐29 lytic cell death Basic Protocol 5: Quantification of HT‐29 lytic cell death 
    more » « less