skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-yield and rapid isolation of extracellular vesicles by flocculation via orbital acoustic trapping: FLOAT
Abstract Extracellular vesicles (EVs) have been identified as promising biomarkers for the noninvasive diagnosis of various diseases. However, challenges in separating EVs from soluble proteins have resulted in variable EV recovery rates and low purities. Here, we report a high-yield ( > 90%) and rapid ( < 10 min) EV isolation method calledFLocculation viaOrbitalAcousticTrapping (FLOAT). The FLOAT approach utilizes an acoustofluidic droplet centrifuge to rotate and controllably heat liquid droplets. By adding a thermoresponsive polymer flocculant, nanoparticles as small as 20 nm can be rapidly and selectively concentrated at the center of the droplet. We demonstrate the ability of FLOAT to separate urinary EVs from the highly abundant Tamm-Horsfall protein, addressing a significant obstacle in the development of EV-based liquid biopsies. Due to its high-yield nature, FLOAT reduces biofluid starting volume requirements by a factor of 100 (from 20 mL to 200 µL), demonstrating its promising potential in point-of-care diagnostics.  more » « less
Award ID(s):
2104295
PAR ID:
10489390
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Microsystems & Nanoengineering
Volume:
10
Issue:
1
ISSN:
2055-7434
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Johnson, Colin (Ed.)
    Extracellular vesicles (EVs) have emerged as promising candidates in biomarker discovery and diagnostics. Protected by the lipid bilayer, the molecular content of EVs in diverse biofluids are protected from RNases and proteases in the surrounding environment that may rapidly degrade targets of interests. Nonetheless, cryopreservation of EV-containing samples to -80°C may expose the lipid bilayer to physical and biological stressors which may result in cryoinjury and contribute to changes in EV yield, function, or molecular cargo. In the present work, we systematically evaluate the effect of cryopreservation at -80°C for a relatively short duration of storage (up to 12 days) on plasma- and media-derived EV particle count and/or RNA yield/quality, as compared to paired fresh controls. On average, we found that the plasma-derived EV concentration of stored samples decreased to 23% of fresh samples. Further, this significant decrease in EV particle count was matched with a corresponding significant decrease in RNA yield whereby plasma-derived stored samples contained only 47–52% of the total RNA from fresh samples, depending on the extraction method used. Similarly, media-derived EVs showed a statistically significant decrease in RNA yield whereby stored samples were 58% of the total RNA from fresh samples. In contrast, we did not obtain clear evidence of decreased RNA quality through analysis of RNA traces. These results suggest that samples stored for up to 12 days can indeed produce high-quality RNA; however, we note that when directly comparing fresh versus cryopreserved samples without cryoprotective agents there are significant losses in total RNA. Finally, we demonstrate that the addition of the commonly used cryoprotectant agent, DMSO, alongside greater control of the rate of cooling/warming, can rescue EVs from damaging ice formation and improve RNA yield. 
    more » « less
  2. Extracellular vesicles (EVs) have shown great potential as cell-free therapeutics and biomimetic nanocarriers for drug delivery. However, the potential of EVs is limited by scalable, reproducible production and in vivo tracking after delivery. Here, we report the preparation of quercetin-iron complex nanoparticle-loaded EVs derived from a breast cancer cell line, MDA-MB-231br, using direct flow filtration. The morphology and size of the nanoparticle-loaded EVs were characterized using transmission electron microscopy and dynamic light scattering. The SDS-PAGE gel electrophoresis of those EVs showed several protein bands in the range of 20–100 kDa. The analysis of EV protein markers by a semi-quantitative antibody array confirmed the presence of several typical EV markers, such as ALIX, TSG101, CD63, and CD81. Our EV yield quantification suggested a significant yield increase in direct flow filtration compared with ultracentrifugation. Subsequently, we compared the cellular uptake behaviors of nanoparticle-loaded EVs with free nanoparticles using MDA-MB-231br cell line. Iron staining studies indicated that free nanoparticles were taken up by cells via endocytosis and localized at a certain area within the cells while uniform iron staining across cells was observed for cells treated with nanoparticle-loaded EVs. Our studies demonstrate the feasibility of using direct flow filtration for the production of nanoparticle-loaded EVs from cancer cells. The cellular uptake studies suggested the possibility of deeper penetration of the nanocarriers because the cancer cells readily took up the quercetin-iron complex nanoparticles, and then released nanoparticle-loaded EVs, which can be further delivered to regional cells. 
    more » « less
  3. ABSTRACT Exosomes, a subset of extracellular vesicles (EVs) ranging in size from 30 to 150 nm, are of significant interest for biomedical applications such as diagnostic testing and therapeutics delivery. Biofluids, including urine, blood, and saliva, contain exosomes that carry biomarkers reflective of their host cells. However, isolation of EVs is often a challenge due to their size range, low density, and high hydrophobicity. Isolations can involve long separation times (ultracentrifugation) or result in impure eluates (size exclusion chromatography, polymer‐based precipitation). As an alternative to these methods, this study evaluates the first use of nylon‐6 capillary‐channeled polymer (C‐CP) fiber columns to separate EVs from human urine via a step‐gradient hydrophobic interaction chromatography method. Different from previous efforts using polyester fiber columns for EV separations, nylon‐6 shows potential for increased isolation efficiency, including somewhat higher column loading capacity and more gentle EV elution solvent strength. The efficacy of this approach to EV separation has been determined by scanning electron and transmission microscopy, nanoparticle flow cytometry (NanoFCM), and Bradford protein assays. Electron microscopy showed isolated vesicles of the expected morphology. Nanoparticle flow cytometry determined particle densities of eluates yielding up to 5 × 108particles mL−1, a typical distribution of vesicle sizes in the eluate (60–100 nm), and immunoconfirmation using fluorescent anti‐CD81 antibodies. Bradford assays confirmed that protein concentrations in the EV eluate were significantly reduced (approx. sevenfold) from raw urine. Overall, this approach provides a low‐cost and time‐efficient (< 20 min) column separation to yield urinary EVs of the high purities required for downstream applications, including diagnostic testing and therapeutics. 
    more » « less
  4. Abstract Extracellular vesicles (EVs) secreted by human‐induced pluripotent stem cells (hiPSCs) have great potential as cell‐free therapies in various diseases, including prevention of blood–brain barrier senescence and stroke. However, there are still challenges in pre‐clinical and clinical use of hiPSC‐EVs due to the need for large‐scale production of a large quantity. Vertical‐Wheel bioreactors (VWBRs) have design features that allow the biomanufacturing of hiPSC‐EVs using a scalable aggregate or microcarrier‐based culture system under low shear stress. EV secretion by undifferentiated hiPSCs expanded as 3‐D aggregates and on Synthemax II microcarriers in VWBRs were investigated. Additionally, two types of EV collection media, mTeSR and HBM, were compared. The hiPSCs were characterized by metabolite and transcriptome analysis as well as EV biogenesis markers. Protein and microRNA cargo were analysed by proteomics and microRNA‐seq, respectively. Thein vitrofunctional assays of microglia stimulation and proliferation were conducted. HiPSCs expanded as 3‐D aggregates and on microcarriers had comparable cell number, while microcarrier culture had higher glucose consumption, higher glycolysis and lower autophagy gene expression based on mRNA‐seq. The microcarrier cultures had at least 17–23 fold higher EV secretion, and EV collection in mTeSR had 2.7–3.7 fold higher yield than HBM medium. Microcarrier culture with mTeSR EV collection had a smaller EV size than other groups, and the cargo was enriched with proteins (proteomics) and miRNAs (microRNA‐seq) reducing apoptosis and promoting cell proliferation (e.g. Wnt‐related pathways). hiPSC‐EVs demonstrated the ability of stimulating proliferation and M2 polarization of microgliain vitro. HiPSC expansion on microcarriers produces much higher yields of EVs than hiPSC aggregates in VWBRs. EV collection in mTeSR increases yield compared to HBM. The biomanufactured EVs from microcarrier culture in mTeSR have exosomal characteristics and are functional in microglia stimulation, which paves the ways for future in vivo anti‐aging study. 
    more » « less
  5. Extracellular vesicles (EVs) are membrane-bound nanoparticles (50–1000 nm) secreted by all cell types and play critical roles in various biological processes. Among these, exosomes, a smaller subset of EVs, have attracted considerable interest due to their potential applications in diagnostics and therapeutics. However, conventional EV isolation methods are often limited by inefficiencies in processing time, recovery, and scalability. Hydrophobic interaction chromatography utilizing capillary-channeled polymer (C–CP) fiber stationary phases offers a promising alternative, enabling rapid (<15 min), cost-effective (~$5 per column) EV isolation with high loading capacities (~1010–10¹² particles) and minimal sample pre-processing. Despite these advantages, achieving high-throughput EV isolation for larger-scale applications using the C–CP fiber platform is the present challenge. To this end, further optimization of stationary phase packing and adsorption conditions is necessary to maximize the available binding surface area in the current microbore column format. This study systematically investigates the influence of interstitial fraction (i.e. packing density) in polyester (PET) C–CP fiber columns on the dynamic binding capacity (DBC) of EVs isolated from human urine using a high-performance liquid chromatography platform. Microbore columns (0.76 mm i.d. × 300 mm) packed with PET C–CP fibers in both an eight-channel (PET-8) and a novel trilobal (PET-Y) configuration were evaluated using breakthrough curves and frontal analysis. The results reveal that lower packing densities correlate with higher mass- and surface areabased EV binding capacities, with a maximum DBCs of 2.86 × 10¹³ EVs g-1 fiber and 1.22 × 10¹⁴ EVs m⁻² fiber achieved in <2 min of sample loading. Under optimum conditions, surface utilization of >50 % is realized. These results establish a framework for optimizing C–CP fiber-based platforms to enhance EV capture efficiency, facilitating the development of scalable EV isolation techniques for biomedical research and therapeutic applications. 
    more » « less