skip to main content


Title: Containerization Approach for High-Fidelity Terramechanics Simulations

Integrated modeling of vehicle, tire and terrain is a fundamental challenge to be addressed for off-road autonomous navigation. The complexities arise due to lack of tools and techniques to predict the continuously varying terrain and environmental conditions and the resultant non-linearities. The solution to this challenge can now be found in the plethora of data driven modeling and control techniques that have gained traction in the last decade. Data driven modeling and control techniques rely on the system’s repeated interaction with the environment to generate a lot of data and then use a function approximator to fit a model for the physical system with the data. Getting good quality and quantity of data may involve extensive experimentation with the physical system impacting developer’s resource. The process is computationally expensive, and the overhead time required is high.
High-fidelity simulators coupled with cloud-based containers can help ease the challenge of data ‘quality’ and ‘quantity’. Project Chrono is a multi-physics simulation engine that provides high-fidelity simulation capabilities with emphasis on flow and terrain modeling. With a host of libraries and APIs for industry accepted tools like MATLAB, Simulink and TensorFlow, Project Chrono proves to be a powerful research bed for data-driven modeling and control development for off-road navigation. Containers are lightweight virtual machines that take away repetitive configurations by setting up a computational environment, including all necessary dependencies and libraries. Docker encapsulates an end-to-end platform solution for heavy computation challenges of deep learning applications and allows fast development and testing. The synergy between the high-fidelity simulator and the compute outsourcing capabilities of cloud-based containers proves to be extremely beneficial for continuous integration and continuous deployment (CI/CD) for data driven modeling and control tasks. In the following work, we containerize a high-fidelity simulator (Project Chrono) to develop and validate data driven modeling and control algorithms for off-road autonomous navigation.

 
more » « less
Award ID(s):
1939058 1925500
NSF-PAR ID:
10489454
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
SAE Mobilus
Date Published:
Format(s):
Medium: X
Location:
Detroit, Michigan, United States
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We describe a simulation environment that enables the design and testing of control policies for off-road mobility of autonomous agents. The environment is demonstrated in conjunction with the training and assessment of a reinforcement learning policy that uses sensor fusion and interagent communication to enable the movement of mixed convoys of human-driven and autonomous vehicles. Policies learned on rigid terrain are shown to transfer to hard (silt-like) and soft (snow-like) deformable terrains. The environment described performs the following: multivehicle multibody dynamics cosimulation in a time/space-coherent infrastructure that relies on the Message Passing Interface standard for low-latency parallel computing; sensor simulation (e.g., camera, GPU, IMU); simulation of a virtual world that can be altered by the agents present in the simulation; training that uses reinforcement learning to “teach” the autonomous vehicles to drive in an obstacle-riddled course. The software stack described is open source. Relevant movies: Project Chrono. Off-road AV simulations, 20202. 
    more » « less
  2. 1
    Autonomous Driving Systems (ADS) are developing rapidly. As vehicle technology advances to SAE level 3 and above (L4, L5), there is a need to maximize and verify safety and operational benefits. As a result, maintenance of these ADS systems is essential which includes scheduled, condition-based, risk-based, and predictive maintenance. A lot of techniques and methods have been developed and are being used in the maintenance of conventional vehicles as well as other industries, but ADS is new technology and several of these maintenance types are still being developed as well as adapted for ADS. In this work, we are presenting a systematic literature review of the “State of the Art” knowledge for the maintenance of a fleet of ADS which includes fault diagnostics, prognostics, predictive maintenance, and preventive maintenance. We are providing statistical inference of different methodologies, comparison between methodologies, and providing our inference of different techniques that are used in other industries for maintenance that can be utilized for ADS. This paper presents a summary, main result, challenges, and opportunities of these approaches and supports new work for the maintenance of ADS.

     
    more » « less
  3. Since its implementation, exhaust gas recirculation has proven to be a reliable technique to control NOx emissions by lowering combustion temperature. Dilution with exhaust gas recirculation, whether in internal combustion engines or sequential-staged gas turbine combustors, affects flame reactivity and stability, which are related to the heat release rate and engine power. Another way to control emissions is to use hydrogen as a carbon-free alternative fuel, which is considered a milestone in the energy-decarbonization journey. However, the high reactivity of hydrogen is one of its hurdles and understanding this effect on laminar burning velocity is important. Flame propagation and burning velocity control the mixture reactivity and exothermicity and are related to abnormal combustion phenomena, such as flashback and knock. Therefore, understanding the effect of exhaust gas addition on the laminar burning velocity of hydrogen/air mixtures is imperative for engine design. In this work, a constant volume combustion chamber was used to observe the laminar burning velocity of stoichiometric hydrogen/air mixtures diluted with combustion products at 1 bar and 423K. Actual combustion products (35 % H2O + 65 % N2, by mole) were used for dilution at rates of 0-50%. The burned gas Markstein length was calculated for all mixtures. Experimental results of the laminar burning velocities for all mixtures were compared with kinetic modeling results. These measurements showed the monotonic reduction of reactivity and the laminar burning velocity with dilution. The reduced burning rates at higher dilution were reflected on the pressure gradient inside the vessel. Markstein length values decreased with dilution, meaning that flame instabilities increased with dilution.

     
    more » « less
  4. The effectiveness of obstacle avoidance response safety systems such as ADAS, has demonstrated the necessity to optimally integrate and enhance these systems in vehicles in the interest of increasing the road safety of vehicle occupants and pedestrians. Vehicle-pedestrian clearance can be achieved with a model safety envelope based on distance sensors designed to keep a threshold between the ego-vehicle and pedestrians or objects in the traffic environment. More accurate, reliable and robust distance measurements are possible by the implementation of multi-sensor fusion. This work presents the structure of a machine learning based sensor fusion algorithm that can accurately detect a vehicle safety envelope with the use of a HC-SR04 ultrasonic sensor, SF11/C microLiDAR sensor, and a 2D RPLiDAR A3M1 sensor. Sensors for the vehicle safety envelope and ADAS were calibrated for optimal performance and integration with versatile vehicle-sensor platforms. Results for this work include a robust distance sensor fusion algorithm that can correctly sense obstacles from 0.05m to 0.5m on average by 94.33% when trained as individual networks per distance. When the algorithm is trained as a common network of all distances, it can correctly sense obstacles at the same distances on average by 96.95%. Results were measured based on the precision and accuracy of the sensors’ outputs by the time of activation of the safety response once a potential collision was detected. From the results of this work the platform has the potential to identify collision scenarios, warning the driver, and taking corrective action based on the coordinate at which the risk has been identified.

     
    more » « less
  5. The lack of inherent security controls makes traditional Controller Area Network (CAN) buses vulnerable to Machine-In-The-Middle (MitM) cybersecurity attacks. Conventional vehicular MitM attacks involve tampering with the hardware to directly manipulate CAN bus traffic. We show, however, that MitM attacks can be realized without direct tampering of any CAN hardware. Our demonstration leverages how diagnostic applications based on RP1210 are vulnerable to Machine-In-The-Middle attacks. Test results show SAE J1939 communications, including single frame and multi-framed broadcast and on-request messages, are susceptible to data manipulation attacks where a shim DLL is used as a Machine-In-The-Middle. The demonstration shows these attacks can manipulate data that may mislead vehicle operators into taking the wrong actions. A solution is proposed to mitigate these attacks by utilizing machine authentication codes or authenticated encryption with pre-shared keys between the communicating parties. Various tradeoffs, such as communication overhead encryption time and J1939 protocol compliance, are presented while implementing the mitigation strategy. One of our key findings is that the data flowing through RP1210-based diagnostic systems are vulnerable to MitM attacks launched from the host diagnostics computer. Security models should include controls to detect and mitigate these data flows. An example of a cryptographic security control to mitigate the risk of an MitM attack was implemented and demonstrated by using the SAE J1939 DM18 message. This approach, however, utilizes over twice the bandwidth as normal communications. Sensitive data should utilize such a security control.

     
    more » « less