skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The One-hundred-deg 2 DECam Imaging in Narrowbands (ODIN): Survey Design and Science Goals
Abstract We describe the survey design and science goals for One-hundred-deg2DECam Imaging in Narrowbands (ODIN), a NOIRLab survey using the Dark Energy Camera (DECam) to obtain deep (AB ∼ 25.7) narrowband images over an unprecedented area of sky. The three custom-built narrowband filters,N419,N501, andN673, have central wavelengths of 419, 501, and 673 nm and respective FWHM of 7.5, 7.6, and 10.0 nm, corresponding to Lyαatz= 2.4, 3.1, and 4.5 and cosmic times of 2.8, 2.1, and 1.4 Gyr, respectively. When combined with even deeper, public broadband data from the Hyper Suprime-Cam, DECam, and in the future, the Legacy Survey of Space and Time, the ODIN narrowband images will enable the selection of over 100,000 Lyα-emitting (LAE) galaxies at these epochs. ODIN-selected LAEs will identify protoclusters as galaxy overdensities, and the deep narrowband images enable detection of highly extended Lyαblobs (LABs). Primary science goals include measuring the clustering strength and dark matter halo connection of LAEs, LABs, and protoclusters, and their respective relationship to filaments in the cosmic web. The three epochs allow for the redshift evolution of these properties to be determined during the period known as Cosmic Noon, where star formation was at its peak. The narrowband filter wavelengths are designed to enable interloper rejection and further scientific studies by revealing [Oii] and [Oiii] atz= 0.34, Lyαand Heii1640 atz= 3.1, and Lyman continuum plus Lyαatz= 4.5. Ancillary science includes similar studies of the lower-redshift emission-line galaxy samples and investigations of nearby star-forming galaxies resolved into numerous [Oiii] and [Sii] emitting regions.  more » « less
Award ID(s):
2206705 2206222
PAR ID:
10489561
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
962
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 36
Size(s):
Article No. 36
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract While many Lyαblobs (LABs) are found in and around several well-known protoclusters at high redshift, how they trace the underlying large-scale structure is still poorly understood. In this work, we utilize 5352 Lyαemitters (LAEs) and 129 LABs atz= 3.1 identified over a ∼9.5 deg2area in early data from the ongoing One-hundred-deg2DECam Imaging in Narrowbands (ODIN) survey to investigate this question. Using LAEs as tracers of the underlying matter distribution, we identify overdense structures as galaxy groups, protoclusters, and filaments of the cosmic web. We find that LABs preferentially reside in regions of higher-than-average density and are located in closer proximity to overdense structures, which represent the sites of protoclusters and their substructures. Moreover, protoclusters hosting one or more LABs tend to have a higher descendant mass than those which do not. Blobs are also strongly associated with filaments of the cosmic web, with ∼70% of the population being within a projected distance of ∼2.4 pMpc from a filament. We show that the proximity of LABs to protoclusters is naturally explained by their association with filaments as large cosmic structures are where many filaments converge. The contiguous wide-field coverage of the ODIN survey allows us to establish firmly a connection between LABs as a population and filaments of the cosmic web for the first time. 
    more » « less
  2. Abstract Lyman-alpha-emitting galaxies (LAEs) are typically young, low-mass, star-forming galaxies with little extinction from interstellar dust. Their low dust attenuation allows their Lyαemission to shine brightly in spectroscopic and photometric observations, providing an observational window into the high-redshift Universe. Narrowband surveys reveal large, uniform samples of LAEs at specific redshifts that probe large-scale structure and the temporal evolution of galaxy properties. The One-hundred-deg2DECam Imaging in Narrowbands (ODIN) utilizes three custom-made narrowband filters on the Dark Energy Camera (DECam) to discover LAEs at three equally spaced periods in cosmological history. In this paper, we introduce the hybrid-weighted double-broadband continuum estimation technique, which yields improved estimation of Lyαequivalent widths. Using this method, we discover 6032, 5691, and 4066 LAE candidates atz= 2.4, 3.1, and 4.5 in the extended COSMOS field (∼9 deg2). We find that [Oii] emitters are a minimal contaminant in our LAE samples, but that interloping Green Pea–like [Oiii] emitters are important for our redshift 4.5 sample. We introduce an innovative method for identifying [Oii] and [Oiii] emitters via a combination of narrowband excess and galaxy colors, enabling their study as separate classes of objects. We present scaled median stacked spectral energy distributions for each galaxy sample, revealing the overall success of our selection methods. We also calculate rest-frame Lyαequivalent widths for our LAE samples and find that the EW distributions are best fit by exponential functions with scale lengths ofw0= 53 ± 1, 65 ± 1, and 59 ± 1 Å, respectively. 
    more » « less
  3. Abstract To understand the formation and evolution of massive cosmic structures, studying them at high redshift, in the epoch when they formed the majority of their mass, is essential. The One-hundred-deg2DECam Imaging in Narrowbands (ODIN) survey is undertaking the widest-area narrowband program to date, to use Lyα-emitting galaxies (LAEs) to trace the large-scale structure (LSS) of the Universe on the scale of 10–100 cMpc at three cosmic epochs. In this work, we present results atz= 3.1 based on early ODIN data in the COSMOS field. We identify protoclusters and cosmic filaments using multiple methods and discuss their strengths and weaknesses. We then compare our observations against the IllustrisTNG suite of cosmological hydrodynamical simulations. The two are in excellent agreement, identifying a similar number and angular size of structures above a specified density threshold. We successfully recover the simulated protoclusters with log(Mz=0/M) ≳ 14.4 in ∼60% of the cases. With these objects, we show that the descendant masses of our observed protoclusters can be estimated purely based on our 2D measurements, finding a medianz= 0 mass of ∼1014.5M. The lack of information on the radial extent of each protocluster introduces a ∼0.4 dex uncertainty in its descendant mass. Finally, we show that the recovery of the cosmic web in the vicinity of protoclusters is both efficient and accurate. The similarity of our observations and the simulations implies that our structure selection is likewise robust and efficient, demonstrating that LAEs are reliable tracers of the LSS. 
    more » « less
  4. Abstract The One-hundred-deg2DECam Imaging in Narrowbands (ODIN) survey is carrying out a systematic search for protoclusters during Cosmic Noon, using Lyα-emitting galaxies (LAEs) as tracers. Once completed, ODIN aims to identify hundreds of protoclusters at redshifts of 2.4, 3.1, and 4.5 across seven extragalactic fields, covering a total area of up to 91 deg2. In this work, we report the high clustering strength of the ODIN protoclusters, determined via measurements of their cross-correlation with LAEs. Our sample consists of 150 protocluster candidates atz = 2.4 and 3.1, identified in two ODIN fields with a total area of 13.9 deg2. Atz = 2.4 and 3.1, the inferred protocluster biases are 6 . 6 1.1 + 1.3 and 6 . 1 1.1 + 1.3 , corresponding to mean halo masses of log M / M = 13.5 3 0.24 + 0.21 and 12.9 6 0.33 + 0.28 , respectively. By the present day, these protoclusters are expected to evolve into virialized galaxy clusters with a mean mass of ∼1014.5M. By comparing the observed number density of protoclusters to that of halos with the same measured clustering strength, we find that the completeness of our sample is of order unity. Finally, the similar descendant masses derived for our samples atz= 2.4 and 3.1, assuming that the halo number density remains constant, suggest that they represent similar structures observed at different cosmic epochs. As a consequence, any observed differences between the two samples can be understood as redshift evolution. The ODIN protocluster samples will thus provide valuable insights into the cosmic evolution of cluster galaxies. 
    more » « less
  5. Aims.We investigate the physical properties and redshift evolution of simulated galaxies residing in unvirialized cosmic structures (i.e., protoclusters) at cosmic noon, to understand the influence of the environment on galaxy formation. This work is intended to build clear expectations for the ongoing ODIN (One-hundred-deg2DECam Imaging in Narrowbands) survey, which is mapping large-scale structures atz= 2.4,3.1, and 4.5 using Lyα-emitting galaxies (LAEs) as tracers. Methods.From the IllustrisTNG simulations, we define subregions centered on the most massive clusters ranked by total stellar mass atz= 0 and study the properties of galaxies within, including those of LAEs. To model the LAE population, we take a semi-analytical approach that assigns Lyαluminosity and equivalent width based on the UV luminosities to galaxies in a probabilistic manner. We investigate stellar mass, star formation rate (SFR), major merger events, and specific star formation rate of the population of star-forming galaxies and LAEs in the field- and protocluster environment and trace their evolution across cosmic time betweenz= 0−4. Results.We find that the overall shape of the UV luminosity function in simulated protocluster environments is characterized by a substantially shallower faint-end slope and a large excess on the bright end, signaling different formation histories for galaxies therein. The difference is milder for the Lyαluminosity function. While protocluster galaxies follow the same SFR-Mscaling relation as average field galaxies, a larger fraction appears to have experienced major mergers in the last 200 Myr and as a result shows enhanced star formation at a ≈60% level, leading to a flatter distribution in both SFR and Mrelative to galaxies in the average field. We find that protocluster galaxies, including LAEs, begin to quench much earlier (z∼0.8−1.6) than field galaxies (z∼0.5−0.9); our result is in qualitative agreement with recent observational results and highlights the importance of large-scale environment on the overall formation history of galaxies. 
    more » « less