skip to main content


This content will become publicly available on October 3, 2024

Title: Edge-Based General Linear Models Capture Moment-to-Moment Fluctuations in Attention

Although we must prioritize the processing of task-relevant information to navigate life, our ability to do so fluctuates across time. Previous work has identified fMRI functional connectivity (FC) networks that predict an individual's ability to sustain attention and vary with attentional state from 1 min to the next. However, traditional dynamic FC approaches typically lack the temporal precision to capture moment-to-moment network fluctuations. Recently, researchers have “unfurled” traditional FC matrices in “edge cofluctuation time series” which measure timepoint-by-timepoint cofluctuations between regions. Here we apply event-based and parametric fMRI analyses to edge time series to capture moment-to-moment fluctuations in networks related to attention. In two independent fMRI datasets examining young adults of both sexes in which participants performed a sustained attention task, we identified a reliable set of edges that rapidly deflects in response to rare task events. Another set of edges varies with continuous fluctuations in attention and overlaps with a previously defined set of edges associated with individual differences in sustained attention. Demonstrating that edge-based analyses are not simply redundant with traditional regions-of-interest–based approaches, up to one-third of reliably deflected edges were not predicted from univariate activity patterns alone. These results reveal the large potential in combining traditional fMRI analyses with edge time series to identify rapid reconfigurations in networks across the brain.

 
more » « less
NSF-PAR ID:
10489563
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
DOI PREFIX: 10.1523
Date Published:
Journal Name:
The Journal of Neuroscience
Volume:
44
Issue:
14
ISSN:
0270-6474
Format(s):
Medium: X Size: Article No. e1543232024
Size(s):
["Article No. e1543232024"]
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Functional connectivity (FC) describes the statistical dependence between neuronal populations or brain regions in resting-state fMRI studies and is commonly estimated as the Pearson correlation of time courses. Clustering or community detection reveals densely coupled sets of regions constituting resting-state networks or functional systems. These systems manifest most clearly when FC is sampled over longer epochs but appear to fluctuate on shorter timescales. Here, we propose a new approach to reveal temporal fluctuations in neuronal time series. Unwrapping FC signal correlations yields pairwise co-fluctuation time series, one for each node pair or edge, and allows tracking of fine-scale dynamics across the network. Co-fluctuations partition the network, at each time step, into exactly two communities. Sampled over time, the overlay of these bipartitions, a binary decomposition of the original time series, very closely approximates functional connectivity. Bipartitions exhibit characteristic spatiotemporal patterns that are reproducible across participants and imaging runs, capture individual differences, and disclose fine-scale temporal expression of functional systems. Our findings document that functional systems appear transiently and intermittently, and that FC results from the overlay of many variable instances of system expression. Potential applications of this decomposition of functional connectivity into a set of binary patterns are discussed. 
    more » « less
  2. Abstract Introduction

    Connectome‐based predictive modeling (CPM) is a recently developed machine‐learning‐based framework to predict individual differences in behavior from functional brain connectivity (FC). In these models, FC was operationalized as Pearson's correlation between brain regions’ fMRI time courses. However, Pearson's correlation is limited since it only captures linear relationships. We developed a more generalized metric of FC based on information flow. This measure represents FC by abstracting the brain as a flow network of nodes that send bits of information to each other, where bits are quantified through an information theory statistic called transfer entropy.

    Methods

    With a sample of individuals performing a sustained attention task and resting during functional magnetic resonance imaging (fMRI) (n = 25), we use the CPM framework to build machine‐learning models that predict attention from FC patterns measured with information flow. Models trained on− 1 participants’ task‐based patterns were applied to an unseen individual's resting‐state pattern to predict task performance. For further validation, we applied our model to two independent datasets that included resting‐state fMRI data and a measure of attention (Attention Network Task performance [n = 41] and stop‐signal task performance [n = 72]).

    Results

    Our model significantly predicted individual differences in attention task performance across three different datasets.

    Conclusions

    Information flow may be a useful complement to Pearson's correlation as a measure of FC because of its advantages for nonlinear analysis and network structure characterization.

     
    more » « less
  3. Abstract

    The increasing incidence of age‐related comorbidities in people with HIV (PWH) has led to accelerated aging theories. Functional neuroimaging research, including functional connectivity (FC) using resting‐state functional magnetic resonance imaging (rs‐fMRI), has identified neural aberrations related to HIV infection. Yet little is known about the relationship between aging and resting‐state FC in PWH. This study included 86 virally suppressed PWH and 99 demographically matched controls spanning 22–72 years old who underwent rs‐fMRI. The independent and interactive effects of HIV and aging on FC were investigated both within‐ and between‐network using a 7‐network atlas. The relationship between HIV‐related cognitive deficits and FC was also examined. We also conducted network‐based statistical analyses using a brain anatomical atlas (n = 512 regions) to ensure similar results across independent approaches. We found independent effects of age and HIV in between‐network FC. The age‐related increases in FC were widespread, while PWH displayed further increases above and beyond aging, particularly between‐network FC of the default‐mode and executive control networks. The results were overall similar using the regional approach. Since both HIV infection and aging are associated with independent increases in between‐network FC, HIV infection may be associated with a reorganization of the major brain networks and their functional interactions in a manner similar to aging.

     
    more » « less
  4. Abstract

    There is ample evidence of atypical functional connectivity (FC) in autism spectrum disorders (ASDs). However, transient relationships between neural networks cannot be captured by conventional static FC analyses. Dynamic FC (dFC) approaches have been used to identify repeating, transient connectivity patterns (“states”), revealing spatiotemporal network properties not observable in static FC. Recent studies have found atypical dFC in ASDs, but questions remain about the nature of group differences in transient connectivity, and the degree to which states persist or change over time. This study aimed to: (a) describe and relate static and dynamic FC in typical development and ASDs, (b) describe group differences in transient states and compare them with static FC patterns, and (c) examine temporal stability and flexibility between identified states. Resting‐state functional magnetic resonance imaging (fMRI) data were collected from 62 ASD and 57 typically developing (TD) children and adolescents. Whole‐brain, data‐driven regions of interest were derived from group independent component analysis. Sliding window analysis and k‐means clustering were used to explore dFC and identify transient states. Across all regions, static overconnnectivity and increased variability over time in ASDs predominated. Furthermore, significant patterns of group differences emerged in two transient states that were not observed in the static FC matrix, with group differences in one state primarily involving sensory and motor networks, and in the other involving higher‐order cognition networks. Default mode network segregation was significantly reduced in ASDs in both states. Results highlight that dynamic approaches may reveal more nuanced transient patterns of atypical FC in ASDs.

     
    more » « less
  5. Analysis of time-evolving data is crucial to understand the functioning of dynamic systems such as the brain. For instance, analysis of functional magnetic resonance imaging (fMRI) data collected during a task may reveal spatial regions of interest, and how they evolve during the task. However, capturing underlying spatial patterns as well as their change in time is challenging. The traditional approach in fMRI data analysis is to assume that underlying spatial regions of interest are static. In this article, using fractional amplitude of low-frequency fluctuations (fALFF) as an effective way to summarize the variability in fMRI data collected during a task, we arrange time-evolving fMRI data as a subjects by voxels by time windows tensor, and analyze the tensor using a tensor factorization-based approach called a PARAFAC2 model to reveal spatial dynamics. The PARAFAC2 model jointly analyzes data from multiple time windows revealing subject-mode patterns, evolving spatial regions (also referred to as networks) and temporal patterns. We compare the PARAFAC2 model with matrix factorization-based approaches relying on independent components, namely, joint independent component analysis (ICA) and independent vector analysis (IVA), commonly used in neuroimaging data analysis. We assess the performance of the methods in terms of capturing evolving networks through extensive numerical experiments demonstrating their modeling assumptions. In particular, we show that (i) PARAFAC2 provides a compact representation in all modes, i.e., subjects, time , and voxels , revealing temporal patterns as well as evolving spatial networks, (ii) joint ICA is as effective as PARAFAC2 in terms of revealing evolving networks but does not reveal temporal patterns, (iii) IVA's performance depends on sample size, data distribution and covariance structure of underlying networks. When these assumptions are satisfied, IVA is as accurate as the other methods, (iv) when subject-mode patterns differ from one time window to another, IVA is the most accurate. Furthermore, we analyze real fMRI data collected during a sensory motor task, and demonstrate that a component indicating statistically significant group difference between patients with schizophrenia and healthy controls is captured, which includes primary and secondary motor regions, cerebellum, and temporal lobe, revealing a meaningful spatial map and its temporal change. 
    more » « less