skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Shear-activation of mechanochemical reactions through molecular deformation
Abstract Mechanical stress can directly activate chemical reactions by reducing the reaction energy barrier. A possible mechanism of such mechanochemical activation is structural deformation of the reactant species. However, the effect of deformation on the reaction energetics is unclear, especially, for shear stress-driven reactions. Here, we investigated shear stress-driven oligomerization reactions of cyclohexene on silica using a combination of reactive molecular dynamics simulations and ball-on-flat tribometer experiments. Both simulations and experiments captured an exponential increase in reaction yield with shear stress. Elemental analysis of ball-on-flat reaction products revealed the presence of oxygen in the polymers, a trend corroborated by the simulations, highlighting the critical role of surface oxygen atoms in oligomerization reactions. Structural analysis of the reacting molecules in simulations indicated the reactants were deformed just before a reaction occurred. Quantitative evidence of shear-induced deformation was established by comparing bond lengths in cyclohexene molecules in equilibrium and prior to reactions. Nudged elastic band calculations showed that the deformation had a small effect on the transition state energy but notably increased the reactant state energy, ultimately leading to a reduction in the energy barrier. Finally, a quantitative relationship was developed between molecular deformation and energy barrier reduction by mechanical stress.  more » « less
Award ID(s):
2038499
PAR ID:
10489569
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
14
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mechanochemical activation has created new opportunities for applications such as solvent-free chemical synthesis, polymer processing, and lubrication. However, mechanistic understanding of these processes is still limited because the mechanochemical response of a system is a complex function of many variables, including the direction of applied stress and the chemical features of the reactants in non-equilibrium conditions. Here, we studied shear-activated reactions of simple cyclic organic molecules to isolate the effect of chemical structure on reaction yield and pathway. Reactive molecular dynamics simulations were used to model methylcyclopentane, cyclohexane, and cyclohexene subject to pressure and shear stress between silica surfaces. Cyclohexene was found to be more susceptible to mechanochemical activation of oxidative chemisorption and subsequent oligomerization reactions than either methylcyclopentane or cyclohexane. The oligomerization trend was consistent with shear-driven polymerization yield measured in ball-on-flat sliding experiments. Analysis of the simulations showed the distribution of carbon atom sites at which oxidative chemisorption occurred and identified the double bond in cyclohexene as being the origin of its shear susceptibility. Lastly, the most common reaction pathways for association were identified, providing insight into how the chemical structures of the precursor molecules determined their response to mechanochemical activation. 
    more » « less
  2. Tribochemistry, which is another name for mechanochemistry driven by shear, deals with complex and dynamic interfacial processes that can lead to surface wear or formation of beneficial tribofilms. For better mechanistic understanding of these processes, we investigated the reactivity of tribopolymerization of organic molecules with different internal ring strain (methylcyclopentane, cyclohexane, and cyclohexene) on a stainless steel (SS) surface in inert (N2), oxidizing (O2), and reducing (H2) environments at room temperature. On the clean stainless steel surface, precursor molecules were found to physisorb with a broad range of molecular orientations. In inert and reducing environments, the strain-free cyclohexane showed the lowest tribochemical activity among the three molecules tested. Compared to the N2 environment, the tribochemical activity in H2 was suppressed. In the O2 environment, only cyclohexene produced tribofilms and methylcyclopentane while cyclohexane did not. When tribofilms were analyzed with Raman spectroscopy, the spectral features of diamond-like carbon (DLC) or amorphous carbon (a-C) were observed due to photochemical degradation of triboproducts. Based on infrared spectroscopy, tribofilms were found to be organic polymers containing oxygenated groups. Whenever polymeric tribrofilms were produced, wear volume was suppressed by orders of magnitudes but not completely to zero. These results support previously suggested mechanisms which involve surface oxygen as a reactant species in the tribopolymerization process. 
    more » « less
  3. Abstract Electrocatalysis plays a key role in the development of renewable energy technologies. Along with the design of electrocatalysts, the microenvironment around catalytic sites has received increasing attention because it affects the distribution and mass transport of reaction species and impacts the reaction kinetics. In this Concept article, we highlight some mechanistic insights into the effect of microenvironment on gas‐involving electrocatalytic reactions, including CO2reduction, 2‐electron oxygen reduction, and hydrazine oxidation, demonstrating their sensitivity to the wetting properties of microenvironment. For reactions with a gaseous reactant, a moderately hydrophobic microenvironment can greatly enhance the mass transport of gaseous species to accelerate the reaction kinetics while improving the stability of gas‐diffusion electrodes. In contrast, for reactions with a liquid reactant and gaseous product, a hydrophilic microenvironment improves the exposure of catalytic sites to the reactant, while a hydrophobic microenvironment benefits the reaction on the other end by accelerating the diffusion and detachment of generated gas bubbles, which would otherwise block the catalytic sites from the reactant. These understandings and insights can provide important guidelines on the control and optimization of catalyst microenvironment for the development of efficient electrolyzers. 
    more » « less
  4. Computational fluid dynamics models often employ the free shear boundary condition at free surfaces, a result from the continuity of the stress and the large viscosity contrast at liquid–gas interfaces. This study leverages nonequilibrium molecular dynamics simulations to investigate the validity of the free shear boundary condition on the exposed surface of a liquid meniscus at the nanoscale. The primary objective is elucidating the fundamental mechanisms and behavior of fluid interactions within a capillary meniscus formed between two carbon nanotubes (CNTs) in shear-driven flow. Shear-driven flow simulations were conducted by varying the velocity of a solid slab to induce different shear rates in the adjacent water molecules. The results demonstrate, for the first time, negligible shear at the free surface, supporting the free shear assumption from the nanoscale point of view. A force balance analysis reveals that capillary and surface tension forces dominate within the meniscus, dictating its shape and stability. Meniscus deformation was observed and primarily attributed to interatomic interactions between water molecules and CNTs, driven by a combination of short-range repulsive forces and van der Waals attractions. The minimal contribution from shear forces suggests that interatomic forces, rather than applied shear stress, are the primary drivers of the meniscus deformation. These findings offer valuable insights into fluid behavior and a sound fundamental analysis of the free shear boundary condition at the nanoscale. 
    more » « less
  5. Stress-modified activated processes are analyzed using a model first proposed by Evans and Polanyi that uses transition-state theory to calculate the effect of some perturbation, described by an intensive variable, \(I\), on the reaction rate. They suggested that the rate constant depended primarily on the equilibrium between the transition state and the reactant, which, in turn, depends on the effect of the perturbation \(I\) on the Gibbs free energy, \(G=U-TS+IC\), where \(C\) is a variable conjugate to \(I\). For example, in the case of a hydrostatic pressure \(P\), the conjugate variable is the volume, \(-V\). This allows a pressure-dependent rate to be calculated from the equilibrium constant between the reactant and transition state. Advantages to this approach are that the analysis is independent of the pathway between the two states and can simultaneously include the effect of multiple perturbations. These ideas are applied to the Prandtl–Tomlinson model, which analyses the force-induced transition rate over a surface energy barrier. The Evans–Polanyi analysis is independent of the shape of the sliding potential and merely requires the locations of the initial and transition states. It also allows the effects of both normal and shear stresses to be analyzed to identify the molecular origins of the well-known pressure-dependent shear stress: \(\tau ={\tau }_{0}+{\mu }_{L}P\), where \({\tau }_{0}\) is a pressure-independent stress. The analysis reveals that \({\mu }_{L}\) depends on the molecular corrugation of the potential and that \({\tau }_{0}\) is velocity dependent, in accord with an empirical equation proposed by Briscoe and Evans. 
    more » « less