skip to main content


Title: Chemical control of excited-state reactivity of the anionic green fluorescent protein chromophore
Abstract

Controlling excited-state reactivity is a long-standing challenge in photochemistry, as a desired pathway may be inaccessible or compete with other unwanted channels. An important example is internal conversion of the anionic green fluorescent protein (GFP) chromophore where non-selective progress along two competing torsional modes (P: phenolate and I: imidazolinone) impairs and enablesZ-to-Ephotoisomerization, respectively. Developing strategies to promote photoisomerization could drive new areas of applications of GFP-like proteins. Motivated by the charge-transfer dichotomy of the torsional modes, we explore chemical substitution on the P-ring of the chromophore as a way to control excited-state pathways and improve photoisomerization. As demonstrated by methoxylation, selective P-twisting appears difficult to achieve because the electron-donating potential effects of the substituents are counteracted by inertial effects that directly retard the motion. Conversely, these effects act in concert to promote I-twisting when introducing electron-withdrawing groups. Specifically, 2,3,5-trifluorination leads to both pathway selectivity and a more direct approach to the I-twisted intersection which, in turn, doubles the photoisomerization quantum yield. Our results suggest P-ring engineering as an effective approach to boost photoisomerization of the anionic GFP chromophore.

 
more » « less
NSF-PAR ID:
10489573
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Chemistry
Volume:
7
Issue:
1
ISSN:
2399-3669
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Since green fluorescent protein (GFP) has revolutionized molecular and cellular biology for about three decades, there has been a keen interest in understanding, designing, and controlling the fluorescence properties of GFP chromophore ( i.e. , HBDI) derivatives from the protein matrix to solution. Amongst these cross-disciplinary efforts, the elucidation of excited-state dynamics of HBDI derivatives holds the key to correlating the light-induced processes and fluorescence quantum yield (FQY). Herein, we implement steady-state electronic spectroscopy, femtosecond transient absorption (fs-TA), femtosecond stimulated Raman spectroscopy (FSRS), and quantum calculations to study a series of mono- and dihalogenated HBDI derivatives (X = F, Cl, Br, 2F, 2Cl, and 2Br) in basic aqueous solution, gaining new insights into the photophysical reaction coordinates. In the excited state, the halogenated “floppy” chromophores exhibit an anti-heavy atom effect, reflected by strong correlations between FQY vs. Franck–Condon energy ( E FC ) or Stokes shift, and k nr vs. E FC , as well as a swift bifurcation into the I-ring (major) and P-ring (minor) twisting motions. In the ground state, both ring-twisting motions become more susceptible to sterics and exhibit spectral signatures from the halogen-dependent hot ground-state absorption band decay in TA data. We envision this type of systematic analysis of the halogenated HBDI derivatives to provide guiding principles for the site-specific modification of GFP chromophores, and expand design space for brighter and potentially photoswitchable organic chemical probes in aqueous solution with discernible spectral signatures throughout the photocycle. 
    more » « less
  2. null (Ed.)
    Rotation around a specific bond after photoexcitation is central to vision and emerging opportunities in optogenetics, super-resolution microscopy, and photoactive molecular devices. Competing roles for steric and electrostatic effects that govern bond-specific photoisomerization have been widely discussed, the latter originating from chromophore charge transfer upon excitation. We systematically altered the electrostatic properties of the green fluorescent protein chromophore in a photoswitchable variant, Dronpa2, using amber suppression to introduce electron-donating and electron-withdrawing groups to the phenolate ring. Through analysis of the absorption (color), fluorescence quantum yield, and energy barriers to ground- and excited-state isomerization, we evaluate the contributions of sterics and electrostatics quantitatively and demonstrate how electrostatic effects bias the pathway of chromophore photoisomerization, leading to a generalized framework to guide protein design. 
    more » « less
  3. null (Ed.)
    Natural and laboratory-guided evolution has created a rich diversity of fluorescent protein (FP)-based sensors for chloride (Cl − ). To date, such sensors have been limited to the Aequorea victoria green fluorescent protein (avGFP) family, and fusions with other FPs have unlocked ratiometric imaging applications. Recently, we identified the yellow fluorescent protein from jellyfish Phialidium sp. (phiYFP) as a fluorescent turn-on, self-ratiometric Cl − sensor. To elucidate its working mechanism as a rare example of a single FP with this capability, we tracked the excited-state dynamics of phiYFP using femtosecond transient absorption (fs-TA) spectroscopy and target analysis. The photoexcited neutral chromophore undergoes bifurcated pathways with the twisting-motion-induced nonradiative decay and barrierless excited-state proton transfer. The latter pathway yields a weakly fluorescent anionic intermediate , followed by the formation of a red-shifted fluorescent state that enables the ratiometric response on the tens of picoseconds timescale. The redshift results from the optimized π–π stacking between chromophore Y66 and nearby Y203, an ultrafast molecular event. The anion binding leads to an increase of the chromophore p K a and ESPT population, and the hindrance of conversion. The interplay between these two effects determines the turn-on fluorescence response to halides such as Cl − but turn-off response to other anions such as nitrate as governed by different binding affinities. These deep mechanistic insights lay the foundation for guiding the targeted engineering of phiYFP and its derivatives for ratiometric imaging of cellular chloride with high selectivity. 
    more » « less
  4. Abstract

    Strategic incorporation of ameta‐dimethylamino (–NMe2) group on the conformationally locked green fluorescent protein (GFP) model chromophore (m‐NMe2‐LpHBDI) has drastically altered molecular electronic properties, counterintuitively enhancing fluorescence of only the neutral and cationic chromophores in aqueous solution. A ~200‐fold decrease in fluorescence quantum yield ofm‐NMe2‐LpHBDI in alcohols (e.g., MeOH, EtOH and 2‐PrOH) supports this GFP‐derived compound as a fluorescence turn‐on water sensor, with large fluorescence intensity differences between H2O and ROH emissions in various H2O/ROH binary mixtures. A combination of steady‐state electronic spectroscopy, femtosecond transient absorption, ground‐state femtosecond stimulated Raman spectroscopy (FSRS) and quantum calculations elucidates an intermolecular hydrogen‐bonding chain between a solvent –OH group and the chromophore phenolic ring –NMe2and –OH functional groups, wherein fluorescence differences arise from an extended hydrogen‐bonding network beyond the first solvation shell, as opposed to fluorescence quenching via a dark twisted intramolecular charge‐transfer state. The absence of ameta‐NMe2group twisting coordinate upon electronic excitation was corroborated by experiments on control samples without themeta‐NMe2group or with bothmeta‐NMe2andpara‐OH groups locked in a six‐membered ring. These deep mechanistic insights stemming from GFP chromophore scaffold will enable rational design of organic, compact and environmentally friendly water sensors.

     
    more » « less
  5. UV-Vis transient absorption (TA) spectroscopy is used to carry out a systematic investigation of the ultrafast CC double photoisomerization dynamics and quantum yield of each isomer of a set of six chromophores based on the same retinal-inspired, indanylidene pyrrolinium (IP) molecular framework. All compounds undergo a sub-picosecond photoisomerization, and can be categorized within two photoisomerization scenarios. Scenario I corresponds to compounds which display the signatures of a vibrationally coherent reactive motion through the conical intersection, with different degrees of vibrational coherence. Qualitatively distinct TA signatures are observed for other compounds which are therefore proposed to obey scenario II, referring to an intermediate regime between scenario I and a thermally-equilibrated, fully stochastic photoreaction. Remarkably, the photoisomerization scenario is observed to correlate with the computed distortion from planarity of the ground state equilibrium geometry, reflecting the torsional strain that would be released after photoexcitation. The most planar compounds – i.e. those having a CC double bond pre-twist of less than 10° – obey scenario II, while compounds obeying scenario I have larger pre-twists. The most pre-twisted compounds (>15°) show pronounced oscillatory signatures of a reaction-induced, low-frequency vibrational wavepacket observed in the S 0 photoproduct and assigned to the torsion mode of the reaction coordinate, thus mimicking the vibrationally coherent photoisomerization dynamics of the rhodopsin protein. Importantly, the systematic comparison of all photoisomerization quantum yields does however not reveal any correlation with observables such as excited state life time, vibrational coherence, absorption wavelengths or degree of pre-twisting. 
    more » « less