Mars exploration is focused on seeking evidence of habitable environments and microbial life. Terrestrial glassy basalts may be the closest Mars‐surface weathering analog and observations increasingly indicate their potential to preserve biogeochemical records. The textures, major and trace element geochemistry, and N concentrations and isotopic compositions of subaerial, subglacial and continental lacustrine hyaloclastites from Antarctica, Iceland, and Oregon, respectively, were studied using micro‐imaging and chemical methods, including gas‐source mass spectrometry. Alteration by meteoric‐sourced waters occurred in circum‐neutral, increasingly alkaline low‐temperature conditions of ∼60°C–100°C (Iceland) and ∼60°C–170°C (Antarctica). Incompatible large ion lithophile element (LILE) enrichments compared to mid‐ocean ridge basalt (MORB) are consistent with more advanced alteration in Antarctic breccias consisting of heulandite‐clinoptilolite, calcite, erionite, quartz, and fluorapophyllite. Granular and tubular alteration textures and radial apatite represent possible microbial traces. Most samples contain more N than fresh MORB or ocean island basalt reflecting enrichment beyond concentrations attributable to igneous processes. Antarctic samples contain 52–1,143 ppm N and have δ15Νairvalues of −20.8‰ to −7.1‰. Iceland‐Oregon basalts contain 1.6–172 ppm N with δ15Ν of −6.7‰ to +7.3‰. Correlations between alteration extents, N concentrations, and concentrations of K2O, other LILEs, and Li and B, reflect the siting of secondary N likely as NH4+replacing K+and potentially as N2in phyllosilicates and zeolites. Although much of the N enrichment and isotope fractionation presented here is not definitively biogenic, given several unknown factors, we suggest that a combination of textures, major and trace element alteration and N and other isotope geochemical compositions could constitute a compelling biosignature in samples from Mars' surface/near‐surface.
The major ion chemistry of the ocean has been assumed to be controlled by river input, hydrothermal circulation at mid-ocean ridges, carbonate production, and low-temperature alteration of seafloor basalt, but marine chemical budgets remain difficult to balance. Here we propose that large-scale groundwater flow and diagenetic reactions in continental shelf sediments have been overlooked as an important contributor to major ion budgets in the ocean. Based on data synthesized from 17 passive margin basins, continental shelves contribute fluid exchanges comparable to hydrothermal circulation at mid-ocean ridges. Chemical exchange is similarly significant, indicating removal of Mg2+from the oceans at rates similar to mid-ocean ridge convection. Continental shelves likely contribute Ca2+and K+to the oceans at rates that, in combination with low-temperature basalt alteration, can close current budget deficits. Flow and reaction in continental shelf sediments should be included in a new generation of studies addressing marine isotope budgets.
more » « less- NSF-PAR ID:
- 10489922
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
null (Ed.)Hydrographic data are analyzed for the broad continental shelf of the Bellingshausen Sea, which is host to a number of rapidly thinning ice shelves. The flow of warm Circumpolar Deep Water (CDW) onto the continental shelf is observed in the two major glacially carved troughs, the Belgica and Latady troughs. Using ship-based measurements of potential temperature, salinity, and dissolved oxygen, collected across several coast-to-coast transects over the Bellingshausen shelf in 2007, the velocity and circulation patterns are inferred based on geostrophic balance and further constrained by the tracer and mass budgets. Meltwater was observed at the surface and at intermediate depth toward the western side of the continental shelf, collocated with inferred outflows. The maximum conversion rate from the dense CDW to lighter water masses by mixing with glacial meltwater is estimated to be 0.37 ± 0.1 Sv in both depth and potential density spaces. This diapycnal overturning is comparable to previous estimates made in the neighboring Amundsen Sea, highlighting the overlooked importance of water mass modification and meltwater production associated with glacial melting in the Bellingshausen Sea.more » « less
-
Abstract The international GEOTRACES program has been instrumental in demonstrating how marine sediments are a critical source of dissolved Fe to the world's oceans. Here, we present dissolved iron (dFe) from the GEOTRACES North Pacific GP15 section, which, alongside other sediment‐source tracers (including dissolved δ56Fe, Mn,228Ra, and particulate Fe), allows for identification of the dFe provenance of three distinct dFe depth maxima at the Alaskan margin. Two of these (shelf and abyssal depths) are of local Alaskan sedimentary origin. The third, a mid‐depth dFe maximum with an absence of228Ra, is an advected signal that, based on tracer data from Western Pacific GEOTRACES transects and circulation models, must be advected from sedimentary sources on the Asian margin, ∼5,000 km away. This study illustrates the importance of measuring diagnostic sedimentary tracers like radium when assigning local margins as sedimentary sources of marine trace metal budgets.
-
Abstract Previous studies showed that satellite‐derived estimates of chlorophyll
a in coastal polynyas over the Antarctic continental shelf are correlated with the basal melt rate of adjacent ice shelves. A 5‐km resolution ocean/sea ice/ice shelf model of the Southern Ocean is used to examine mechanisms that supply the limiting micronutrient iron to Antarctic continental shelf surface waters. Four sources of dissolved iron are simulated with independent tracers, assumptions about the source iron concentration for each tracer, and an idealized summer biological uptake. Iron from ice shelf melt provides about 6% of the total dissolved iron in surface waters. The contribution from deep sources of iron on the shelf (sediments and Circumpolar Deep Water) is much larger at 71%. The relative contribution of dissolved iron supply from basal melt driven overturning circulation within ice shelf cavities is heterogeneous around Antarctica, but at some locations, such as the Amundsen Sea, it is the primary mechanism for transporting deep dissolved iron to the surface. Correlations between satellite chlorophylla in coastal polynyas around Antarctica and simulated dissolved iron confirm the previous suggestion that productivity of the polynyas is linked to the basal melt of adjacent ice shelves. This correlation is the result of upward advection or mixing of iron‐rich deep waters due to circulation changes driven by ice shelf melt, rather than a direct influence of iron released from melting ice shelves. This dependence highlights the potential vulnerability of coastal Antarctic ecosystems to changes in ice shelf basal melt rates. -
Abstract Hydrographic data are analyzed for the broad continental shelf of the Bellingshausen Sea, which is host to a number of rapidly thinning ice shelves. The flow of warm Circumpolar Deep Water (CDW) onto the continental shelf is observed in the two major glacially carved troughs, the Belgica and Latady troughs. Using ship‐based measurements of potential temperature, salinity, and dissolved oxygen, collected across several coast‐to‐coast transects over the Bellingshausen shelf in 2007, the velocity and circulation patterns are inferred based on geostrophic balance and further constrained by the tracer and mass budgets. Meltwater was observed at the surface and at intermediate depth toward the western side of the continental shelf, collocated with inferred outflows. The maximum conversion rate from the dense CDW to lighter water masses by mixing with glacial meltwater is estimated to be 0.37 ± 0.1 Sv in both depth and potential density spaces. This diapycnal overturning is comparable to previous estimates made in the neighboring Amundsen Sea, highlighting the overlooked importance of water mass modification and meltwater production associated with glacial melting in the Bellingshausen Sea.