skip to main content


Title: WALLABY pilot survey: an ‘almost’ dark cloud near the Hydra cluster
ABSTRACT

We explore the properties of an ‘almost’ dark cloud of neutral hydrogen (H i) using data from the Widefield ASKAP L-band Legacy All-sky Survey (WALLABY). Until recently, WALLABY J103508 − 283427 (also known as H1032 − 2819 or LEDA 2793457) was not known to have an optical counterpart, but we have identified an extremely faint optical counterpart in the Dark Energy Spectroscopic Instrument (DESI) Legacy Imaging Survey Data Release 10. We measured the mean g-band surface brightness to be 27.0 ± 0.3 mag arcsec−2. The WALLABY data revealed the cloud to be closely associated with the interacting group Klemola 13 (also known as HIPASS J1034 − 28 and the Tol 9 group), which itself is associated with the Hydra cluster. In addition to WALLABY J103508 − 283427/H1032 − 2819, Klemola 13 contains 10 known significant galaxies and almost half of the total H i gas is beyond the optical limits of the galaxies. By combining the new WALLABY data with archival data from the Australia Telescope Compact Array, we investigate the H i distribution and kinematics of the system. We discuss the relative role of tidal interactions and ram pressure stripping in the formation of the cloud and the evolution of the system. The ease of detection of this cloud and intragroup gas is due to the sensitivity, resolution, and wide field of view of WALLABY, and showcases the potential of the full WALLABY survey to detect many more examples.

 
more » « less
NSF-PAR ID:
10489953
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
528
Issue:
3
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 4010-4028
Size(s):
["p. 4010-4028"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present deep optical imaging and photometry of four objects classified as “Almost-Dark” galaxies in the Arecibo Legacy Fast Arecibo L-band Feed Array (ALFALFA) survey because of their gas-rich nature and extremely faint or missing optical emission in existing catalogs. They have Himasses of 107–109Mand distances of ∼9–100 Mpc. Observations with the WIYN 3.5 m telescope and One Degree Imager reveal faint stellar components with central surface brightnesses of ∼24–25magarcsec2in thegband. We also present the results of Hisynthesis observations with the Westerbork Synthesis Radio Telescope. These Almost-Dark galaxies have been identified as possible tidal dwarf galaxies (TDGs) based on their proximity to one or more massive galaxies. We demonstrate that AGC 229398 and AGC 333576 likely have the low dark matter content and large effective radii representative of TDGs. They are located much farther from their progenitors than previously studied TDGs, suggesting they are older and more evolved. AGC 219369 is likely dark matter dominated, while AGC 123216 has a dark matter content that is unusually high for a TDG, but low for a normal dwarf galaxy. We consider possible mechanisms for the formation of the TDG candidates such as a traditional major merger scenario and gas ejection from a high-velocity flyby. Blind Hisurveys like ALFALFA enable the detection of gas-rich, optically faint TDGs that can be overlooked in other surveys, thereby providing a more complete census of the low-mass galaxy population and an opportunity to study TDGs at a more advanced stage of their life cycle.

     
    more » « less
  2. ABSTRACT

    In our hierarchical structure-formation paradigm, the observed morphological evolution of massive galaxies – from rotationally supported discs to dispersion-dominated spheroids – is largely explained via galaxy merging. However, since mergers are likely to destroy discs, and the most massive galaxies have the richest merger histories, it is surprising that any discs exist at all at the highest stellar masses. Recent theoretical work by our group has used a cosmological, hydrodynamical simulation to suggest that extremely massive (M* > 1011.4 M⊙) discs form primarily via minor mergers between spheroids and gas-rich satellites, which create new rotational stellar components and leave discs as remnants. Here, we use UV-optical and H i data of massive galaxies, from the Sloan Digital Sky Survey, Galaxy Evolution Explorer, Dark Energy Camera Legacy Survey (DECaLS), and Arecibo Legacy Fast ALFA surveys, to test these theoretical predictions. Observed massive discs account for ∼13 per cent of massive galaxies, in good agreement with theory (∼11 per cent). ∼64 per cent of the observed massive discs exhibit tidal features, which are likely to indicate recent minor mergers, in the deep DECaLS images (compared to ∼60 per cent in their simulated counterparts). The incidence of these features is at least four times higher than in low-mass discs, suggesting that, as predicted, minor mergers play a significant (and outsized) role in the formation of these systems. The empirical star formation rates agree well with theoretical predictions and, for a small galaxy sample with H i detections, the H i masses and fractions are consistent with the range predicted by the simulation. The good agreement between theory and observations indicates that extremely massive discs are indeed remnants of recent minor mergers between spheroids and gas-rich satellites.

     
    more » « less
  3. Abstract

    We have discovered the stellar counterpart to the ALFALFA Virgo 7 cloud complex, which has been thought to be optically dark and nearly star-free since its discovery in 2007. This ∼190 kpc long chain of enormous atomic gas clouds (MHi∼ 109M) is embedded in the hot intracluster medium of the Virgo galaxy cluster but is isolated from any galaxy. Its faint, blue stellar counterpart, BC6, was identified in a visual search of archival optical and UV imaging. Follow-up observations with the Green Bank Telescope, Hobby–Eberly Telescope, and Hubble Space Telescope demonstrate that this faint counterpart is at the same velocity as the atomic gas, actively forming stars, and metal-rich (12 + (O/H) = 8.58 ± 0.25). We estimate its stellar mass to be onlylog(M*/M)4.4, making it one of the most gas-rich stellar systems known. Aside from its extraordinary gas content, the properties of BC6 are entirely consistent with those of a recently identified class of young, low-mass, isolated, and star-forming clouds in Virgo that appear to have formed via extreme ram pressure stripping events. We expand the existing discussion of the origin of this structure and suggest NGC 4522 as a likely candidate; however, the current evidence is not fully consistent with any of our proposed progenitor galaxies. We anticipate that other “dark” gas clouds in Virgo may have similarly faint, star-forming counterparts. We aim to identify these through the help of a citizen science search of the entire cluster.

     
    more » « less
  4. Abstract

    Galaxy cluster mergers that exhibit clear dissociation between their dark matter, intracluster gas, and stellar components are great laboratories for probing dark matter properties. Mergers that are binary and in the plane of the sky have the additional advantage of being simpler to model, allowing for a better understanding of the merger dynamics. We report the discovery of a galaxy cluster merger with all these characteristics and present a multiwavelength analysis of the system, which was found via a search in the redMaPPer optical cluster catalog. We perform a galaxy redshift survey to confirm the two subclusters are at the same redshift (0.541, with 368 ± 519 km s−1line-of-sight velocity difference between them). The X-ray morphology shows two surface brightness peaks between the brightest cluster galaxies (BCGs). We construct weak-lensing mass maps that reveal a mass peak associated with each subcluster. Fitting Navarro–Frenk–White profiles to the lensing data, we find masses ofM200c= 36 ± 11 × 1013and 38 ± 11 × 1013Mh−1for the southern and northern subclusters, respectively. From the mass maps, we infer that the two mass peaks are separated by520125+162kpc along the merger axis, whereas the two BCGs are separated by 697 kpc. We also present deep GMRT 650 MHz data to search for a radio relic or halo and find none. Using the observed merger parameters, we find analog systems in cosmologicaln-body simulations and infer that this system is observed between 96 and 236 Myr after pericenter, with the merger axis within 28° of the plane of the sky.

     
    more » « less
  5. Abstract We present results from deep H i and optical imaging of AGC 229101, an unusual H i source detected at v helio =7116 km s −1 in the Arecibo Legacy Fast ALFA (ALFALFA) blind H i survey. Initially classified as a candidate “dark” source because it lacks a clear optical counterpart in Sloan Digital Sky Survey (SDSS) or Digitized Sky Survey 2 (DSS2) imaging, AGC 229101 has 10 9.31±0.05 M ⊙ of H i , but an H i line width of only 43 ± 9 km s −1 . Low-resolution Westerbork Synthesis Radio Telescope (WSRT) imaging and higher-resolution Very Large Array (VLA) B-array imaging show that the source is significantly elongated, stretching over a projected length of ∼80 kpc. The H i imaging resolves the source into two parts of roughly equal mass. WIYN partially populated One Degree Imager (pODI) optical imaging reveals a faint, blue optical counterpart coincident with the northern portion of the H i . The peak surface brightness of the optical source is only μ g ∼ 26.6 mag arcsec −2 , well below the typical cutoff that defines the isophotal edge of a galaxy, and its estimated stellar mass is only 10 7.32±0.33 M ⊙ , yielding an overall neutral gas-to-stellar mass ratio of M / M * = 98 − 52 + 111 . We demonstrate the extreme nature of this object by comparing its properties with those of other H i -rich sources in ALFALFA and the literature. We also explore potential scenarios that might explain the existence of AGC 229101, including a tidal encounter with neighboring objects and a merger of two dark H i clouds. 
    more » « less