Abstract The impact of climate on topography, which is a theme in landscape evolution studies, has been demonstrated, mostly, at mountain range scales and across climate zones. However, in drylands, spatiotemporal discontinuities of rainfall and the crucial role of extreme rainstorms raise questions and challenges in identifying climate properties that govern surface processes. Here, we combine methods to examine hyperarid escarpment sensitivity to storm‐scale forcing. Using a high‐resolution DEM and field measurements, we analyzed the topography of a 40‐km‐long escarpment in the Negev desert (Israel). We also used rainfall intensity data from a convection‐permitting numerical weather model for storm‐scale statistical analysis. We conducted hydrological simulations of synthetic rainstorms, revealing the frequency of sediment mobilization along the sub‐cliff slopes. Results show that cliff gradients along the hyperarid escarpment increase systematically from the wetter (90 mm yr−1) southwestern to the drier (45 mm yr−1) northeastern sides. Also, sub‐cliff slopes at the southwestern study site are longer and associated with milder gradients and coarser sediments. Storm‐scale statistical analysis reveals a trend of increasing extreme (>10 years return‐period) intensities toward the northeast site, opposite to the trend in mean annual rainfall. Hydrological simulations based on these statistics indicate a higher frequency of sediment mobilization in the northeast, which can explain the pronounced topographic differences between the sites. The variations in landscape and rainstorm properties across a relatively short distance highlight the sensitivity of arid landforms to extreme events.
more »
« less
Impacts of Rainstorm Intensity and Temporal Pattern on Caprock Cliff Persistence and Hillslope Morphology in Drylands
Abstract Hillslope topographic change in response to climate and climate change is a key aspect of landscape evolution. The impact of short‐duration rainstorms on hillslope evolution in arid regions is persistently questioned but often not directly examined in landscape evolution studies, which are commonly based on mean climate proxies. This study focuses on hillslope surface processes responding to rainstorms in the driest regions of Earth. We present a numerical model for arid, rocky hillslopes with lithology of a softer rock layer capped by a cliff‐forming resistant layer. By representing the combined action of bedrock and clast weathering, cliff‐debris ravel, and runoff‐driven erosion, the model can reproduce commonly observed cliff‐profile morphology. Numerical experiments with a fixed base level were used to test hillslope response to cliff‐debris grain size, rainstorm intensities, and alternation between rainstorm patterns. The persistence of vertical cliffs and the pattern of sediment sorting depend on rainstorm intensities and the size of cliff debris. Numerical experiments confirm that these two variables could have driven the landscape in the Negev Desert (Israel) toward an observed spatial contrast in topographic form over the past 105–106 years. For a given total storm rain depth, short‐duration higher‐intensity rainstorms are more erosive, resulting in greater cliff retreat distances relative to longer, low‐intensity storms. Temporal alternation between rainstorm regimes produces hillslope profiles similar to those previously attributed to Quaternary oscillations in the mean climate. We suggest that arid hillslopes may undergo considerable geomorphic transitions solely by alternating intra‐storm patterns regardless of rainfall amounts.
more »
« less
- PAR ID:
- 10489963
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Earth Surface
- Volume:
- 129
- Issue:
- 2
- ISSN:
- 2169-9003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Assessing rivers' and hillslopes' sensitivity to external forcing is paramount to understand landscape evolution, in particular as a response to Quaternary climate changes. River networks are usually considered to be the main conveyors of environmental signals, such as changes in precipitation, temperature, or baselevel. Yet because hillslopes provide the source of sediment for river networks, their response to environmental change also modulates landscape dynamics. In order to characterize such behavior, we analyze the response times of a transport‐limited hillslope. We use simple numerical models of denudation to study hillslope responses to oscillatory forcing and understand their filtering effects on environmental signals. Modifications in the frequency of climate oscillation, such as the change that occurred at the Mid‐Pleistocene Transition, can significantly modulate hillslope sediment‐flux response. We infer a wide range of hillslope responses, ranging from negligible change over the full range of climate‐forcing frequencies, to a significant filtering of long‐period signals.more » « less
-
The size, frequency, and geographic scope of severe wildfires are expanding across the globe, including in the Western United States. Recently burned steeplands have an increased likelihood of debris flows, which pose hazards to downstream communities. The conditions for postfire debris‐flow initiation are commonly expressed as rainfall intensity‐duration thresholds, which can be estimated given sufficient observational history. However, the spread of wildfire across diverse climates poses a challenge for accurate threshold prediction in areas with limited observations. Studies of mass‐movement processes in unburned areas indicate that thresholds vary with local climate, such that higher rainfall rates are required for initiation in climates characterized by frequent intense rainfall. Here, we use three independent methods to test whether initiation of postfire runoff‐generated debris flows across the Western United States varies similarly with climate. Through the compilation of observed thresholds at various fires, analysis of the spatial density of observed debris flows, and quantification of feature importance at different spatial scales, we show that postfire debris‐flow initiation thresholds vary systematically with short‐duration rainfall‐intensity climatology. The predictive power of climatological data sets that are readily available before a fire occurs offers a much‐needed tool for hazard management in regions that are facing increased wildfire activity, have sparse observational history, and/or have limited resources for field‐based hazard assessment. Furthermore, if the observed variation in thresholds reflects long‐term adjustment of the landscape to local climate, rapid shifts in rainfall intensity related to climate change will likely induce spatially variable shifts in postfire debris‐flow likelihood.more » « less
-
Abstract Spatially integrated water transport dynamics at the hillslope scale have rarely been observed directly, and underlying physical mechanisms of those dynamics are poorly understood. We present time‐variable transit time distributions and StorAge Selection (SAS) functions for a 28 days tracer experiment conducted at the Landscape Evolution Observatory, Biosphere 2, the University of Arizona, AZ, USA. The observed form of the SAS functions is concave, meaning that older water in the hillslope was preferentially discharged than younger water. The concavity is, in part, explained by the relative importance of advective and diffusive water dynamics and by the geomorphologic structure of the hillslopes. A simple numerical examination illustrates that, for straight plan‐shaped hillslopes, the saturated zone SAS function is concave when the hillslope Péclet (Pe) number is large (and thus when the advective water dynamics are more pronounced). We also investigated the effect of hillslope planform geometry on the saturated zone SAS function using a model and found that the more convergent the plan shape is, the more concave the SAS function is. A numerical examination indicates that the unsaturated zone SAS function is concave for straight and convergent hillslopes when the soil thickness is uniform. The concavity of those subcomponent SAS functions signifies that the hillslope scale SAS function is concave for straight or convergent plan shape hillslopes when the hillslope Pe number is high.more » « less
-
Abstract Prior numerical modeling work has suggested that incision into sub‐horizontal layered stratigraphy with variable erodibility induces non‐uniform erosion rates even if base‐level fall is steady and sustained. Erosion rates of cliff bands formed in the stronger rocks in a stratigraphic sequence can greatly exceed the rate of base‐level fall. Where quartz in downstream sediment is sourced primarily from the stronger, cliff‐forming units, erosion rates estimated from concentrations of cosmogenic beryllium‐10 (10Be) in detrital sediment will reflect the locally high erosion rates in retreating cliff bands. We derive theoretical relationships for threshold hillslopes and channels described by the stream‐power incision model as a quantitative guide to the potential magnitude of this amplification of10Be‐derived erosion rates above the rate of base‐level fall. Our analyses predict that the degree of erosion rate amplification is a function of bedding dip and either the ratio of rock erodibility in alternating strong and weak layers in the channel network, or the ratio of cliff to intervening‐slope gradient on threshold hillslopes. We test our predictions in the cliff‐and‐bench landscape of the Grand Staircase in southern Utah, USA. We show that detrital cosmogenic erosion rates in this landscape are significantly higher (median 300 m/Ma) than the base‐level fall rate (~75 m/Ma) determined from the incision rate of a trunk stream into a ~0.6 Ma basalt flow emplaced along a 16 km reach of the channel. We infer a 3–6‐fold range in rock strength from near‐surface P‐wave velocity measurements. The approximately four‐fold difference between the median10Be‐derived erosion rate and the long‐term rate of base‐level fall is consistent with our model and the observation that the stronger, cliff‐forming lithologies in this landscape are the primary source of quartz in detrital sediments. © 2020 John Wiley & Sons, Ltd.more » « less
An official website of the United States government
