Abstract Understanding arctic ecosystem function is key to understanding future global carbon (C) and nutrient cycling processes. However, small mammal herbivores can have effects on ecosystems as structure builders and these effects have been underrepresented in the understanding of arctic systems.We examined the impact of small mammal structures (hay piles, runways, latrines) on soils and plants in three arctic tundra regions near Utqiaġvik, Toolik Lake, and Nome, Alaska. Our aims were to (1) examine how vole and lemming structures influence plant and soil nutrient pools and microbial processes, (2) determine if structure effects were similar across tundra system types, and (3) understand how changes in the abundance and cover of these structures during different phases of small mammal multi‐annual population cycles might influence biogeochemical cycling.In general, small mammal structures increased nitrogen (N) availability in soils, although effects varied by study region. Across study regions, hay piles were relatively uncommon (lowest % cover) but increased multiple soil N and P pools, C‐ and N‐acquiring enzyme activities, and leaf phosphorus (P) concentrations, with the specific nutrient variables and size of the effects varying by study region. Latrines had the second highest cover and influenced multiple C, N and P pools, but their effects were mainly observed within a single region. Lastly, runways had the highest % cover of all activity types but increased the fewest number of soil nutrient variables.We conclude that by influencing soil nutrient availability and biogeochemical cycling, small mammal structures can influence bottom‐up regulation of ecosystem function, particularly during the high phase of the small mammal population cycle. Future changes in these population cycles might alter the role of small mammals in the Arctic and have lasting effects on system processes. Read the freePlain Language Summaryfor this article on the Journal blog
more »
« less
Soil and plant variables collected at brown lemming structure sites near Utqaigvik, Alaska, summer 2021
This data describes above-ground and below-ground variables collected under small mammal-built structures and control sites from two tundra locations in polygonal tundra near Utqiagvik, Alaska, USA. Small mammal structures sampled included hay piles (winter nests), runways, latrines, and burrow entrances. Above-ground data collected include relative percent cover, litter depth, and Normalized Difference Vegetation Index. Below-ground data collected include inorganic soil nutrients, total extractable soil nutrients, microbial biomass nutrients, microbial exo-enzyme activities, soil pH, soil conductivity, soil temperature, and soil respiration.
more »
« less
- PAR ID:
- 10489973
- Publisher / Repository:
- NSF Arctic Data Center
- Date Published:
- Subject(s) / Keyword(s):
- Herbivory Tundra Biogeochemistry Rodent Soil Plants Terrestrial
- Format(s):
- Medium: X
- Location:
- near Utqiagvik Alaska
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We conducted a manipulative experiment to quantify the impact of small mammal herbivores on the belowground biogeochemistry of the tundra at three sites near Toolik Lake, Alaska. At each site we set up grazing fences in July of 2018 to simulate different levels of small mammal herbivore (vole and lemming) activity. Each site had 3 treatment plots and a control plot: 1)Exclosure treatments (EX) were 8 meter (m) x 8m square mesh fences 2) control plots (CT) were 8m x 8m unfenced plots marked with pin flags at corners 3) press treatments (PR) were 20m x 20m square mesh fences stocked with 4 tundra voles (Microtus oeconomus) every summer except for 2024 and 4) pulse treatments (PU) where we stocked the fence with 4 voles in 2018 and then removed and excluded voles from 2019 onward. At each site we collected temperature measurements using iButton data loggers from the soil surface, the soil organic layer, and the soil mineral layer every 4 hours from 2018 - 2024. iButton loggers were removed and replaced after soil thaw every summer.more » « less
-
Plants serve as critical links between above- and below-ground microbial communitites, both influencing and being influenced by microbes in these two realms. Below-ground microbial communities are expected to respond to soil resource environments, which are mediated by the roots of plants that can, in turn, be influenced by the above-ground community of foliar endophytes. For instance, diverse plant communities deposit more, and more diverse, nutrients into the soil, and this deposition is often increased when foliar pathogens are removed. Differences in soil resources can alter soil microbial composition and phenotypes, including inhibitory capacity, resource use, and antibiotic resistance. In this work, we consider plots differing in plant richness and application of foliar fungicide, evaluating consequences on soil resource levels and root-associatedStreptomycesphenotypes. Soil carbon, nitrogen, phosphorus, potassium, and organic matter were greater in samples from polyculture than monoculture, yet this increase was surprisingly offset when foliar fungal communities were disrupted. We find thatStreptomycesphenotypes varied more between richness plots—with theStreptomycesfrom polyculture showing lower inhibitory capacity, altered resource-use profiles, and greater antibiotic resistance—than between subplots with/without foliar fungicide. Where foliar fungicide affected phenotypes, it did so differently in polyculture than in monoculture, for instance decreasing niche width and overlap in monoculture while increasing them in polyculture. No differences in phenotype were correlated with soil nutrient levels, suggesting the need for further research looking more closely at soil resource diversity and particular compounds that were found to differ between treatments.more » « less
-
ABSTRACT The below‐ground growing season often extends beyond the above‐ground growing season in tundra ecosystems and as the climate warms, shifts in growing seasons are expected. However, we do not yet know to what extent, when and where asynchrony in above‐ and below‐ground phenology occurs and whether variation is driven by local vegetation communities or spatial variation in microclimate. Here, we combined above‐ and below‐ground plant phenology metrics to compare the relative timings and magnitudes of leaf and fine‐root growth and senescence across microclimates and plant communities at five sites across the Arctic and alpine tundra biome. We observed asynchronous growth between above‐ and below‐ground plant tissue, with the below‐ground season extending up to 74% (~56 days) beyond the onset of above‐ground leaf senescence. Plant community type, rather than microclimate, was a key factor controlling the timing, productivity, and growth rates of fine roots, with graminoid roots exhibiting a distinct ‘pulse’ of growth later into the growing season than shrub roots. Our findings indicate the potential of vegetation change to influence below‐ground carbon storage as the climate warms and roots remain active in unfrozen soils for longer. Taken together, our findings of increased root growth in soils that remain thawed later into the growing season, in combination with ongoing tundra vegetation change including increased shrub and graminoid abundance, indicate increased below‐ground productivity and altered carbon cycling in the tundra biome.more » « less
-
The below-ground growing season often extends beyond the above-ground growing season in tundra ecosystems. However, we do not yet know where and when this occurs and whether these phenological asynchronies are driven by variation in local vegetation communities or by spatial variation in microclimate. Here, we combined above- and below-ground plant phenology metrics to compare the relative timings and magnitudes of leaf and root growth and senescence across microclimates and plant communities at five sites across the tundra biome. We observed asynchronous growth between above-ground and below-ground plant tissue, with the below-ground season extending up to 74% beyond the onset of above-ground leaf senescence. Plant community type, rather than microclimate, was a key factor controlling the timing, productivity and growth rates of roots, with graminoid roots exhibiting a distinct ‘pulse’ of growth later into the growing season than shrub roots. Our findings indicate the potential of vegetation change to influence below-ground carbon storage as roots remain active in unfrozen soils for longer as the climate warms. Taken together, increased root growth in soils that remain thawed later into the growing season, in combination with ongoing tundra vegetation change including increased shrubs and graminoids, can act together to alter below-ground productivity and carbon cycling in the tundra biome.more » « less
An official website of the United States government
