skip to main content


This content will become publicly available on February 7, 2025

Title: Host avian species and environmental conditions influence the microbial ecology of brood parasitic brown‐headed cowbird nestlings: What rules the roost?
Abstract

The role of species interactions, as well as genetic and environmental factors, all likely contribute to the composition and structure of the gut microbiome; however, disentangling these independent factors under field conditions represents a challenge for a functional understanding of gut microbial ecology. Avian brood parasites provide unique opportunities to investigate these questions, as brood parasitism results in parasite and host nestlings being raised in the same nest, by the same parents. Here we utilized obligate brood parasite brown‐headed cowbird nestlings (BHCO;Molothrus ater) raised by several different host passerine species to better understand, via 16S rRNA sequencing, the microbial ecology of brood parasitism. First, we compared faecal microbial communities of prothonotary warbler nestlings (PROW;Protonotaria citrea) that were either parasitized or non‐parasitized by BHCO and communities among BHCO nestlings from PROW nests. We found that parasitism by BHCO significantly altered both the community membership and community structure of the PROW nestling microbiota, perhaps due to the stressful nest environment generated by brood parasitism. In a second dataset, we compared faecal microbiotas from BHCO nestlings raised by six different host passerine species. Here, we found that the microbiota of BHCO nestlings was significantly influenced by the parental host species and the presence of an inter‐specific nestmate. Thus, early rearing environment is important in determining the microbiota of brood parasite nestlings and their companion nestlings. Future work may aim to understand the functional effects of this microbiota variability on nestling performance and fitness.

 
more » « less
Award ID(s):
2305848
NSF-PAR ID:
10490105
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Ecology
Volume:
33
Issue:
6
ISSN:
0962-1083
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Host‐associated microbiota can be affected by factors related to environmental change, such as urbanization and invasive species. For example, urban areas often affect food availability for animals, which can change their gut microbiota. Invasive parasites can also influence microbiota through competition or indirectly through a change in the host immune response. These interacting factors can have complex effects on host fitness, but few studies have disentangled the relationship between urbanization and parasitism on an organism's gut microbiota. To address this gap in knowledge, we investigated the effects of urbanization and parasitism by the invasive avian vampire fly (Philornis downsi) on the gut microbiota of nestling small ground finches (Geospiza fuliginosa) on San Cristóbal Island, Galápagos. We conducted a factorial study in which we experimentally manipulated parasite presence in an urban and nonurban area. Faeces were then collected from nestlings to characterize the gut microbiota (i.e. bacterial diversity and community composition). Although we did not find an interactive effect of urbanization and parasitism on the microbiota, we did find main effects of each variable. We found that urban nestlings had lower bacterial diversity and different relative abundances of taxa compared to nonurban nestlings, which could be mediated by introduction of the microbiota of the food items or changes in host physiology. Additionally, parasitized nestlings had lower bacterial richness than nonparasitized nestlings, which could be mediated by a change in the immune system. Overall, this study advances our understanding of the complex effects of anthropogenic stressors on the gut microbiota of birds.

     
    more » « less
  2. Abstract

    Human activity changes multiple factors in the environment, which can have positive or negative synergistic effects on organisms. However, few studies have explored the causal effects of multiple anthropogenic factors, such as urbanization and invasive species, on animals and the mechanisms that mediate these interactions. This study examines the influence of urbanization on the detrimental effect of invasive avian vampire flies (Philornis downsi) on endemic Darwin's finches in the Galápagos Islands. We experimentally manipulated nest fly abundance in urban and non‐urban locations and then characterized nestling health, fledging success, diet, and gene expression patterns related to host defense. Fledging success of non‐parasitized nestlings from urban (79%) and non‐urban (75%) nests did not differ significantly. However, parasitized, non‐urban nestlings lost more blood, and fewer nestlings survived (8%) compared to urban nestlings (50%). Stable isotopic values (δ15N) from urban nestling feces were higher than those from non‐urban nestlings, suggesting that urban nestlings are consuming more protein. δ15N values correlated negatively with parasite abundance, which suggests that diet might influence host defenses (e.g., tolerance and resistance). Parasitized, urban nestlings differentially expressed genes within pathways associated with red blood cell production (tolerance) and pro‐inflammatory response (innate immunological resistance), compared to parasitized, non‐urban nestlings. In contrast, parasitized non‐urban nestlings differentially expressed genes within pathways associated with immunoglobulin production (adaptive immunological resistance). Our results suggest that urban nestlings are investing more in pro‐inflammatory responses to resist parasites but also recovering more blood cells to tolerate blood loss. Although non‐urban nestlings are mounting an adaptive immune response, it is likely a last effort by the immune system rather than an effective defense against avian vampire flies since few nestlings survived.

     
    more » « less
  3. Abstract

    Co‐parasitism is ubiquitous and has important consequences for the ecology and evolution of wild host populations. Studies of parasite co‐infections remain limited in scope, with few experimental tests of the fitness consequences of multiple parasites, especially in natural populations.

    We measured the separate and combined effects ofPhilornis seguyinest flies and shiny cowbirdsMolothrus bonariensison the fitness of a shared host, the chalk‐browed mockingbird (Mimus saturninus) in Argentina.

    Using a two‐factor experimental approach, we manipulated the presence of nest flies and cowbirds in mockingbird nests and assessed their effects on mockingbird haemoglobin levels, begging and provisioning rates, body size, and fledging success. We also monitored rates of nest predation in relation to parasitism by flies and cowbirds.

    Nest flies reduced the haemoglobin concentration, body size, and fledging success of mockingbirds, likely because mockingbirds did not compensate for parasitism by begging more or feeding their nestlings more. Cowbirds also reduced the fledging success of mockingbirds, even though they had no detectable effect on haemoglobin or body size. Nests with cowbirds, which beg more than mockingbirds, attracted more nest predators. There was no significant interaction between the effects of flies and cowbirds on any component of mockingbird fitness. The combined effects of nest flies and cowbirds were strictly additive.

    In summary, we show that nest flies and cowbirds both reduce host fitness, but do not have interactive effects in co‐parasitized nests. Our results further suggest that predators exacerbate the effects of nest flies and cowbirds on their hosts. Our study shows that the fitness consequences of co‐parasitism are complex, especially in the context of community‐level interactions.

     
    more » « less
  4. Abstract

    Animals maintain complex associations with a diverse microbiota living in their guts. Our understanding of the ecology of these associations is extremely limited in reptiles. Here, we report an in‐depth study into the microbial ecology of gut communities in three syntopic and viviparous lizard species (two omnivores:Liolaemus parvusandLiolaemus ruibaliand an herbivore: Phymaturus williamsi). Using 16SrRNAgene sequencing to inventory various bacterial communities, we elucidate four major findings: (i) closely related lizard species harbour distinct gut bacterial microbiota that remain distinguishable in captivity; a considerable portion of gut bacterial diversity (39.1%) in nature overlap with that found on plant material, (ii) captivity changes bacterial community composition, although host‐specific communities are retained, (iii) faecal samples are largely representative of the hindgut bacterial community and thus represent acceptable sources for nondestructive sampling, and (iv) lizards born in captivity and separated from their mothers within 24 h shared 34.3% of their gut bacterial diversity with their mothers, suggestive of maternal or environmental transmission. Each of these findings represents the first time such a topic has been investigated in lizard hosts. Taken together, our findings provide a foundation for comparative analyses of the faecal and gastrointestinal microbiota of reptile hosts.

     
    more » « less
  5. Abstract

    Nest‐sharer avian brood parasites do not evict or otherwise kill host chicks, but instead inflict a range of negative effects on their nestmates that are mediated by interactions between the parasite and host life history traits. Although many of the negative fitness effects of avian brood parasitism are well documented across diverse host species, there remains a paucity of studies that have examined the impacts of parasitism across the entirety of host ontogeny (i.e., from when an egg is laid until independence). More specifically, few studies have examined the impact of brood parasitism on the pre‐ and post‐fledging development, physiology, behavior, and survival of host offspring. To help fill this knowledge gap, we assessed the effects of brood parasitism by Brown‐headed Cowbirds (Molothrus ater) across the ontogeny (incubation, nestling, and post‐fledging period) of nine sympatrically breeding host species in central Illinois, USA; due to sample sizes, impacts on the post‐fledging period were only examined in two of the nine species. Specifically, we examined the impact of brood parasitism on ontogenetic markers including the embryonic heart rate, hatching rate, nestling period length, nest survival, and offspring growth and development. Additionally, in species in which we found negative impacts of cowbird parasitism on host nestmate ontogeny, we examined whether the difference in adult size between parasites and their hosts and their hatching asynchrony positively predicted variation in host costs across these focal taxa. We found that costs of cowbird parasitism were most severe during early nesting stages (reduction in the host clutch or brood size) and were predicted negatively by host size and positively by incubation length. In contrast, we only found limited costs of cowbird parasitism on other stages of host ontogeny; critically, post‐fledging survival did not differ between host offspring that fledged alongside cowbirds and those that did not. Our findings (i) highlight the direct costs of cowbird parasitism on host fitness, (ii) provide evidence for when (the stage) those costs are manifested, and (iii) may help to explain why many anti‐cowbird defenses of hosts have evolved for protection from parasitism during the laying and incubation stages.

     
    more » « less