skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 17 until 8:00 AM ET on Saturday, May 18 due to maintenance. We apologize for the inconvenience.


Title: AI‐EDGE: An NSF AI institute for future edge networks and distributed intelligence
Abstract

This paper highlights the overall endeavors of the NSF AI Institute for Future Edge Networks and Distributed Intelligence (AI‐EDGE) to create a research, education, knowledge transfer, and workforce development environment for developing technological leadership in next‐generation edge networks (6G and beyond) and artificial intelligence (AI). The research objectives of AI‐EDGE are twofold: “AI for Networks” and “Networks for AI.” The former develops new foundational AI techniques to revolutionize technologies for next‐generation edge networks, while the latter develops advanced networking techniques to enhance distributed and interconnected AI capabilities at edge devices. These research investigations are conducted across eight symbiotic thrust areas that work together to address the main challenges towards those goals. Such a synergistic approach ensures a virtuous research cycle so that advances in one area will accelerate advances in the other, thereby paving the way for a new generation of networks that are not only intelligent but also efficient, secure, self‐healing, and capable of solving large‐scale distributed AI challenges. This paper also outlines the institute's endeavors in education and workforce development, as well as broadening participation and enforcing collaboration.

 
more » « less
NSF-PAR ID:
10490303
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
AI Magazine
ISSN:
0738-4602
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The National Science Foundation (NSF) Artificial Intelligence (AI) Institute for Edge Computing Leveraging Next Generation Networks (Athena) seeks to foment a transformation in modern edge computing by advancing AI foundations, computing paradigms, networked computing systems, and edge services and applications from a completely new computing perspective. Led by Duke University, Athena leverages revolutionary developments in computer systems, machine learning, networked computing systems, cyber‐physical systems, and sensing. Members of Athena form a multidisciplinary team from eight universities. Athena organizes its research activities under four interrelated thrusts supporting edge computing: Foundational AI, Computer Systems, Networked Computing Systems, and Services and Applications, which constitute an ambitious and comprehensive research agenda. The research tasks of Athena will focus on developing AI‐driven next‐generation technologies for edge computing and new algorithmic and practical foundations of AI and evaluating the research outcomes through a combination of analytical, experimental, and empirical instruments, especially with target use‐inspired research. The researchers of Athena demonstrate a cohesive effort by synergistically integrating the research outcomes from the four thrusts into three pillars: Edge Computing AI Systems, Collaborative Extended Reality (XR), and Situational Awareness and Autonomy. Athena is committed to a robust and comprehensive suite of educational and workforce development endeavors alongside its domestic and international collaboration and knowledge transfer efforts with external stakeholders that include both industry and community partnerships.

     
    more » « less
  2. Abstract

    The Institute for Foundations of Machine Learning (IFML) focuses on core foundational tools to power the next generation of machine learning models. Its research underpins the algorithms and data sets that make generative artificial intelligence (AI) more accurate and reliable. Headquartered at The University of Texas at Austin, IFML researchers collaborate across an ecosystem that spans University of Washington, Stanford, UCLA, Microsoft Research, the Santa Fe Institute, and Wichita State University. Over the past year, we have witnessed incredible breakthroughs in AI on topics that are at the heart of IFML's agenda, such as foundation models, LLMs, fine‐tuning, and diffusion with game‐changing applications influencing almost every area of science and technology. In this article, we seek to highlight seek to highlight the application of foundational machine learning research on key use‐inspired topics:

    Fairness in Imaging with Deep Learning: designing the correct metrics and algorithms to make deep networks less biased.

    Deep proteins: using foundational machine learning techniques to advance protein engineering and launch a biomanufacturing revolution.

    Sounds and Space for Audio‐Visual Learning: building agents capable of audio‐visual navigation in complex 3D environments via new data augmentations.

    Improving Speed and Robustness of Magnetic Resonance Imaging: using deep learning algorithms to develop fast and robust MRI methods for clinical diagnostic imaging.

    IFML is also responding to explosive industry demand for an AI‐capable workforce. We have launched an accessible, affordable, and scalable new degree program—the MSAI—that looks to wholly reshape the AI/ML workforce pipeline.

     
    more » « less
  3. Abstract

    The National AI Institute for Adult Learning and Online Education (AI‐ALOE) develops AI learning and teaching assistants to enhance the proficiency of adult reskilling and upskilling, and thereby transform workforce development. The AI assistants both address known problems in online education for reskilling/upskilling and help personalize adult learning for workforce development. AI‐ALOE develops new AI models and techniques for self‐explanation, machine teaching, and mutual theory of mind to make the AI assistants usable, learnable, teachable, and scalable. AI‐ALOE is also developing a data architecture for deploying and evaluating the AI assistants, collecting and analyzing data, and personalizing learning at scale.

     
    more » « less
  4. Abstract

    Artificial intelligence (AI) has the potential for vast societal and economic gain; yet applications are developed in a largely ad hoc manner, lacking coherent, standardized, modular, and reusable infrastructures. The NSF‐funded Intelligent CyberInfrastructure with Computational Learning in the Environment AI Institute (“ICICLE”) aims to fundamentally advanceedge‐to‐center, AI‐as‐a‐Service, achieved through intelligent cyberinfrastructure (CI) that spans the edge‐cloud‐HPCcomputing continuum,plug‐and‐playnext‐generation AI and intelligent CI services, and a commitment to design for broad accessibility and widespread benefit. This design is foundational to the institute's commitment to democratizing AI. The institute's CI activities are informed by three high‐impact domains:animal ecology,digital agriculture, andsmart foodsheds. The institute's workforce development and broadening participation in computing efforts reinforce the institute's commitment todemocratizing AI. ICICLE seeks to serve asthe national nexus for AI and intelligent CI, and welcomes engagement across its wide set of programs.

     
    more » « less
  5. The evolution of open architectures for Radio Ac- cess Networks (RANs) is revolutionizing network management and optimization. This transformation, fostered by O-RAN, expedites data acquisition and examination by exploiting newly established open interfaces. Moreover, it has led to the rise of near real-time RAN Intelligent Controllers (RICs), instigating a wave of AI-driven applications, or xApps, that employ Artificial Intelligence (AI)/Machine Learning (ML) methods. Nevertheless, deploying xApps as centralized applications presents substantial challenges, such as handling vast data transactions, potential delays, and security vulnerabilities, which are notably prominent within the multifaceted, decentralized, multivendor, and trustless nature of open networks. To alleviate these predicaments, a transition from centralized apps operating in near real-time to distributed real-time apps is imperative for augmented security and efficiency. This paper addresses these complexities by introducing an open platform that integrates a federated reinforcement learning algorithm to operate as distributed Apps (dApps) within the next-generation O-RAN architecture. We present evaluation results in a specific test environment. 
    more » « less