skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Absorption Troughs of Lyα Emitters in HETDEX
Abstract The Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) is designed to detect and measure the redshifts of more than 1 million Lyαemitting galaxies (LAEs) 1.88 <z< 3.52. In addition to its cosmological measurements, these data enable studies of Lyαspectral profiles and the underlying radiative transfer. Using the roughly half a million LAEs in the HETDEX Data Release 3, we stack various subsets to obtain the typical Lyαprofile for thez∼ 2–3 epoch and to understand their physical properties. We find clear absorption wings around Lyαemission, which extend ∼2000 km s−1both redward and blueward of the central line. Using far-UV spectra of nearby (0.002 <z< 0.182) LAEs in the COS Legacy Archive Spectroscopic Survey treasury and optical/near-IR spectra of 2.8 <z< 6.7 LAEs in the Multi Unit Spectroscopic-Wide survey, we observe absorption profiles in both redshift regimes. Dividing the sample by volume density shows that the troughs increase in higher-density regions. This trend suggests that the depth of the absorption is dependent on the local density of objects near the LAE, a geometry that is similar to damped Lyαsystems. Simple simulations of Lyαradiative transfer can produce similar troughs due to absorption of light from background sources by Higas surrounding the LAEs.  more » « less
Award ID(s):
2008793
PAR ID:
10490482
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
962
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 102
Size(s):
Article No. 102
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) is a large-volume spectroscopic survey without preselection of sources, searching ∼540 deg2for Lyαemitting galaxies (LAEs) at 1.9 <z< 3.5. Taking advantage of such a wide-volume survey, we perform a pilot study using early HETDEX data to search for lensed Lyαemitters (LAEs). After performing a proof of concept using a previously known lensed LAE covered by HETDEX, we perform a search for previously unknown lensed LAEs in the HETDEX spectroscopic sample. We present a catalog of 26 potential LAEs lensed by foreground, red, non-star-forming galaxies atz∼ 0.4–0.7. We estimate the magnification for each candidate system, finding 12 candidates to be within the strong lensing regime (magnificationμ> 2). Follow-up observations of these potential lensed LAEs have the potential to confirm their lensed nature and explore these distant galaxies in more detail. 
    more » « less
  2. Abstract We present measurements ofz ∼ 2.4 ultraviolet (UV) background light using Lyαabsorption from galaxies atz ∼ 2–3 in the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) database. Thanks to the wide area of this survey, we also measure the variability of this light across the sky. The data suggest an asymmetric geometry where integrated UV light from background galaxies is absorbed by Hiwithin the halo of a foreground galaxy, in a configuration similar to damped Lyαsystems. Using stacking analyses of over 400,000 HETDEX LAE spectra, we argue that this background absorption is detectable in our data. We also argue that the absorption signal becomes negative due to HETDEX’s sky-subtraction procedure. The amount that the absorption is oversubtracted is representative of thez ∼ 2.4 UV contribution to the overall extragalactic background light (EBL) at Lyα. Using this method, we determine an average intensity (inνJνunits) of 12.9 ± 3.7 nW m−2sr−1at a median observed wavelength of 4134 Å, or a rest-frame UV background intensity of 508 ± 145 nW m−2sr−1atz ∼ 2.4. We find that this flux varies significantly depending on the density of galaxies in the field of observation. Our estimates are consistent with direct measurements of the overall EBL. 
    more » « less
  3. Abstract The Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) is an untargeted spectroscopic survey that aims to measure the expansion rate of the universe at z ∼ 2.4 to 1% precision for both H ( z ) and D A ( z ). HETDEX is in the process of mapping in excess of one million Ly α emitting (LAE) galaxies and a similar number of lower- z galaxies as a tracer of the large-scale structure. The success of the measurement is predicated on the post-observation separation of galaxies with Ly α emission from the lower- z interloping galaxies, primarily [O ii ], with low contamination and high recovery rates. The Emission Line eXplorer (ELiXer) is the principal classification tool for HETDEX, providing a tunable balance between contamination and completeness as dictated by science needs. By combining multiple selection criteria, ELiXer improves upon the 20 Å rest-frame equivalent width cut commonly used to distinguish LAEs from lower- z [O ii ] emitting galaxies. Despite a spectral resolving power, R ∼ 800, that cannot resolve the [O ii ] doublet, we demonstrate the ability to distinguish LAEs from foreground galaxies with 98.1% accuracy. We estimate a contamination rate of Ly α by [O ii ] of 1.2% and a Ly α recovery rate of 99.1% using the default ELiXer configuration. These rates meet the HETDEX science requirements. 
    more » « less
  4. Abstract We present the median-stacked Lyman-α (Lyα) surface brightness profiles of 968 spectroscopically selected Lyαemitting galaxies (LAEs) at redshifts 1.9 <z< 3.5 in the early data of the Hobby-Eberly Telescope Dark Energy Experiment. The selected LAEs are high-confidence Lyαdetections with high signal-to-noise ratios observed with good seeing conditions (point-spread function FWHM <1.″4), excluding active galactic nuclei. The Lyαluminosities of the LAEs are 1042.4–1043erg s−1. We detect faint emission in the median-stacked radial profiles at the level of ( 3.6 ± 1.3 ) × 10 20 erg s 1 cm 2 arcsec 2 from the surrounding Lyαhalos out tor≃ 160 kpc (physical). The shape of the median-stacked radial profile is consistent atr< 80 kpc with that of much fainter LAEs at 3 <z< 4 observed with the Multi Unit Spectroscopic Explorer (MUSE), indicating that the median-stacked Lyαprofiles have similar shapes at redshifts 2 <z< 4 and across a factor of 10 in Lyαluminosity. While we agree with the results from the MUSE sample atr< 80 kpc, we extend the profile over a factor of two in radius. Atr> 80 kpc, our profile is flatter than the MUSE model. The measured profile agrees at most radii with that of galaxies in the Byrohl et al. cosmological radiative transfer simulation atz= 3. This suggests that the surface brightness of a Lyαhalo atr≲ 100 kpc is dominated by resonant scattering of Lyαphotons from star-forming regions in the central galaxy, whereas atr> 100 kpc, it is dominated by photons from galaxies in surrounding dark matter halos. 
    more » « less
  5. Abstract JWST observations have recently begun delivering the first samples of Lyαvelocity profile measurements atz> 6, opening a new window into the reionization process. Interpretation ofz≳ 6 line profiles is currently stunted by limitations in our knowledge of the intrinsic Lyαprofile (before encountering the intergalactic medium (IGM)) of the galaxies that are common atz≳ 6. To overcome this shortcoming, we have obtained resolved (R∼ 3900) Lyαspectroscopy of 42 galaxies atz= 2.1–3.4 with similar properties as are seen atz> 6. We quantify a variety of Lyαprofile statistics as a function of [Oiii]+Hβequivalent width (EW). Our spectra reveal a new population ofz≃ 2–3 galaxies with large [Oiii]+HβEWs (>1200 Å) and a large fraction of Lyαflux emerging near the systemic redshift (peak velocity ≃0 km s−1). These spectra indicate that low-density neutral hydrogen channels are able to form in a subset of low-mass galaxies (≲1 × 108M) that experience a burst of star formation (sSFR > 100 Gyr−1). Other extreme [Oiii] emitters show weaker Lyαthat is shifted to higher velocities (≃240 km s−1) with little emission near the line center. We investigate the impact the IGM is likely to have on these intrinsic line profiles in the reionization era, finding that the centrally peaked Lyαemitters should be strongly attenuated atz≳ 5. We show that these line profiles are particularly sensitive to the impact of resonant scattering from infalling IGM and can be strongly attenuated even when the IGM is highly ionized atz≃ 5. We compare these expectations against a new database ofz≳ 6.5 galaxies with robust velocity profiles measured with JWST/NIRSpec. 
    more » « less