skip to main content


Title: Foredune‐forming grass and plant diversity show contrasting responses along the southeastern United States coast after hurricane disturbance
Abstract Aims

Latitudinal gradients in plant communities are well studied, yet how these fundamental ecological patterns influence ecosystem recovery after extreme weather events remains largely unknown. In coastal foredunes, we investigated how the cover of a key dune‐building grass (Uniola paniculata), vegetation diversity and vegetation cover vary along a short latitudinal gradient during recovery from hurricane disturbance.

Location

Southeastern USA.

Methods

We surveyed 24 sites, from central Florida to north Georgia (>400 km), four times over 18 months. General linear mixed‐effect models were used to unravel patterns of vegetation responses across latitude.

Results

Vegetation properties showed countervailing patterns across the latitudinal gradient. While vegetation richness, functional diversity and total cover generally declined,Uniolacover increased with increasing latitude. Further, the latitude–richness relationship strengthened while the latitude–functional diversity relationship was invariant with increasing time since the hurricane disturbance. Meanwhile, the latitude–Uniolaassociation was seasonally dependent and strongest in the summer. Latitude also influenced diversity–cover relationships: vegetation cover was positively related to species richness at lower latitudes, while it was positively associated with functional diversity only at northern sites. We found no relationship between species richness or functional diversity and increases in cover between time steps; however, recruitment of new species and functional groups was associated with increases in vegetation cover between time steps at northern sites.

Conclusions

Our study highlights the temporal dynamism and contrasting patterns along latitudinal gradients exhibited by key engineering species and overall plant diversity in foredunes — a crucial line of coastal protection — exposed to hurricane disturbances. These results suggest a need for greater integration of latitudinal and diversity effects into our understanding of coastal dune resilience. They also highlight the potential benefits of enhancing dune plant biodiversity, particularly in areas where the dune‐building grasses that are classically employed in restoration (e.g.,Uniola) are unfavoured, to accelerate the re‐establishment of well‐vegetated dunes.

 
more » « less
NSF-PAR ID:
10490487
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Vegetation Science
Volume:
35
Issue:
1
ISSN:
1100-9233
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Riparian zones are among the most biologically diverse ecosystems in the Intermountain West, USA, and provide valuable ecosystem services, including high rates of biotic productivity, nutrient processing, and carbon storage. Thus, their sustainability is a high priority for land managers. Large ungulates affect composition and structure of riparian/stream ecosystems through herbivory and physical effects, via trailing and trampling. Bison (Bison bison) in Yellowstone National Park (YNP) have been characterized as “ecosystem engineers” because of their demonstrated effects on phenology, aboveground productivity of grasses, and woody vegetation structure. Bison have greatly increased in numbers during the last two decades and spend large periods of time in the broad open floodplains of the Northern Range of the Park, where they are hypothesized to have multiple effects on plant species composition and diversity. We sampled indicators of bison use as well as riparian vegetation composition, diversity, and structure along eight headwater streams within YNP's Northern Range. Total fecal density ranged from 333 to 1833 fecal chips and/or piles/ha, stubble heights ranged from 7 to 49 cm, and streambank disturbance ranged from 9% to 62%. High levels of bison use were positively correlated with exotic species dominance and negatively correlated with species richness, native species diversity, willow (Salixspp.) cover, and wetland species dominance. At three sites, the intensity of bison use exceeded recommended utilization thresholds to avoid degradation of streams and riparian zones on public lands. The influences of large herbivores, principally bison, on vegetation composition and structure suggest the cumulative effects of the current densities on the Northern Range are contributing to biotic impoverishment, representing the loss of ecosystem services that are provided by native riparian plant communities. In addition, contemporary levels of bison use may be exacerbating climate change effects as observed through ungulate‐related shifts in composition toward plant assemblages adapted to warmer and drier conditions. However, the resilience of native riparian vegetation suggests that sites currently heavily utilized by bison would have the potential for recovery with a reduction in pressure by this herbivore.

     
    more » « less
  2. Abstract Aim

    Alpine ecosystems differ in area, macroenvironment and biogeographical history across the Earth, but the relationship between these factors and plant species richness is still unexplored. Here, we assess the global patterns of plant species richness in alpine ecosystems and their association with environmental, geographical and historical factors at regional and community scales.

    Location

    Global.

    Time period

    Data collected between 1923 and 2019.

    Major taxa studied

    Vascular plants.

    Methods

    We used a dataset representative of global alpine vegetation, consisting of 8,928 plots sampled within 26 ecoregions and six biogeographical realms, to estimate regional richness using sample‐based rarefaction and extrapolation. Then, we evaluated latitudinal patterns of regional and community richness with generalized additive models. Using environmental, geographical and historical predictors from global raster layers, we modelled regional and community richness in a mixed‐effect modelling framework.

    Results

    The latitudinal pattern of regional richness peaked around the equator and at mid‐latitudes, in response to current and past alpine area, isolation and the variation in soil pH among regions. At the community level, species richness peaked at mid‐latitudes of the Northern Hemisphere, despite a considerable within‐region variation. Community richness was related to macroclimate and historical predictors, with strong effects of other spatially structured factors.

    Main conclusions

    In contrast to the well‐known latitudinal diversity gradient, the alpine plant species richness of some temperate regions in Eurasia was comparable to that of hyperdiverse tropical ecosystems, such as the páramo. The species richness of these putative hotspot regions is explained mainly by the extent of alpine area and their glacial history, whereas community richness depends on local environmental factors. Our results highlight hotspots of species richness at mid‐latitudes, indicating that the diversity of alpine plants is linked to regional idiosyncrasies and to the historical prevalence of alpine ecosystems, rather than current macroclimatic gradients.

     
    more » « less
  3. Abstract Aim

    To test the latitudinal gradient in plant species diversity for self‐similarity across taxonomic scales and amongst taxa.

    Location

    North America.

    Methods

    We used species richness data from 245 local vascular plant floras to quantify the slope and shape of the latitudinal gradients in species diversity (LGSD) across all plant species as well as within each family and order. We calculated the contribution of each family and order to the empiricalLGSD.

    Results

    We observed the canonicalLGSDwhen all plants were considered with floras at the lowest latitudes having, on average, 451 more species than floras at the highest latitudes. When considering slope alone, most orders and families showed the expected negative slope, but 31.7% of families and 27.7% of orders showed either no significant relationship between latitude and diversity or a reverseLGSD. Latitudinal patterns of family diversity account for at least 14% of thisLGSD. Most orders and families did not show the negative slope and concave‐down quadratic shape expected by the pattern for all plant species. A majority of families did not make a significant contribution in species to theLGSDwith 53% of plant families contributing little to nothing to the overall gradient. Ten families accounted for more than 70% of the gradient. Two families, the Asteraceae and Fabaceae, contributed a third of theLGSD.

    Main Conclusions

    The empiricalLGSDwe describe here is a consequence of a gradient in the number of families and diversification within relative few plant families. Macroecological studies typically aim to generate models that are general across taxa with the implicit assumption that the models are general within taxa. Our results strongly suggest that models of the latitudinal gradient in plant species richness that rely on environmental covariates (e.g. temperature, energy) are likely not general across plant taxa.

     
    more » « less
  4. Abstract

    Coastal foredunes provide the first line of defense against rising sea levels and storm surge and for this reason there is increasing interest in understanding and modeling foredune formation and post‐storm recovery. However, there is limited observational data available to provide empirical guidance for the development of model parameterizations. To provide guidance for improved representation of dune grass growth in models, we conducted a two‐year multi‐species transplant experiment on Hog Island, VA, U.S.A. and measured the dependence of plant growth on elevation and distance from the shoreline, as well as the relationship between plant growth and sand accumulation. We tracked total leaf growth (length) and aboveground leaf length and found thatAmmophila breviligulata(American beachgrass) andUniola paniculata(sea oats) grew more thanSpartina patens(saltmeadow cordgrass) by a factor of 15% (though not statistically significant) and 45%, respectively. Our results also suggest a range of basal/frontal area ratios (an important model parameter) from 0.5‐1 and a strong correlation between transplant growth and total sand deposition for all species at the scale of two years, but not over shorter temporal scales. Distance from the shoreline and elevation had no effect on transplant growth rate but did have an effect on survival. Based on transplant survival, the seaward limit of vegetation at the end of the experiment was approximately 30 m from the MHWL and at an elevation of 1.43 m, corresponding to inundation less than 7.5% of the time according to total water level calculations. Results from this experiment provide evidence for the dune‐building capacity of all three species, suggestingS. patensis not a maintainer species, as previously thought, but rather a moderate dune builder even though its growth is less stimulated by sand deposition thanA. breviligulataandU. paniculata. © 2019 John Wiley & Sons, Ltd.

     
    more » « less
  5. Abstract Aim

    While latitudinal and elevational gradients of range size have been thoroughly studied, the ways these gradients might interact with each other to shape species distributions in complex montane environments are not well understood. We examined how elevational and latitudinal gradients interact to structure individual species’ distributions and larger geographic range size patterns.

    Location

    Neotropics.

    Taxa

    Two epiphytic plant genera:PeperomiaandElaphoglossum.

    Methods

    We compiled 35,382 GBIF records for 505 species, calculated species’ latitudinal and elevational range extents, and examined gradients in richness and range size. For individual species, we analysed the relationship between elevational and latitudinal occurrences.

    Results

    Approximately 50% of species demonstrate a significant, negative relationship between their elevational and latitudinal occurrences; most of these species occupy a non‐random, relatively narrow range of mean annual temperatures across their latitudinal distribution. Across species there is a positive relationship between latitudinal and elevational extent, a phenomenon we hereafter refer to as ‘Stevens’ pattern’. Average latitudinal extent of species’ ranges increased at higher latitudes, in support of Rapoport's rule. Average elevational extent increased with elevation in the global dataset (consistent with Rapoport's elevational rule), but most subsets of the data demonstrated a peak in average extent size at mid‐elevations.

    Main conclusions

    The prevalence of species with negative elevation‐by‐latitude relationships, along with their non‐random tracking of temperature, suggests that many tropical species with broad geographic distributions are more temperature sensitive than their broad ranges might otherwise suggest. Consequently, even tropical species that occur across a wide range of latitudes and elevations might be threatened by climate change. These wide‐ranging species drive the occurrence of two biogeographic patterns: Rapoport's elevational rule and Stevens’ pattern. Finally, while Rapoport's rule and its elevational corollary were supported in part, the unexpected occurrence of many species restricted to high elevations near the equator suggests a possible focus for conservation effort.

     
    more » « less