skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Constraints from GPS measurements on plate coupling within the Makran subduction zone and tsunami scenarios in the western Indian Ocean
SUMMARY Plate-coupling estimates and previous seismicity indicate that portions of the Makran megathrust of southern Pakistan and Iran are partially coupled and have the potential to produce future magnitude 7+ earthquakes. However, the GPS observations needed to constrain coupling models are sparse and lead to an incomplete understanding of regional earthquake and tsunami hazard. In this study, we assess GPS velocities for plate coupling of the Makran subduction zone with specific attention to model resolution and the accretionary prism rheology. We use finite element model-derived Green's functions to invert for the interseismic slip deficit under both elastic and viscoelastic Earth assumptions. We use the model resolution matrix to characterize plate-coupling scenarios that are consistent with the limited spatial resolution afforded by GPS observations. We then forward model the corresponding tsunami responses at major coastal cities within the western Indian Ocean basin. Our plate-coupling results show potential segmentation of the megathrust with varying coupling from west to east, but do not rule out a scenario where the entire length of the megathrust could rupture in a single earthquake. The full subduction zone rupture scenarios suggest that the Makran may be able to produce earthquakes up to Mw 9.2. The corresponding tsunami model from the largest earthquake event (Mw 9.2) estimates maximum wave heights reaching 2–5 m at major port cities in the northern Arabian Sea region. Cities on the west coast of India are less affected (1–2 m). Coastlines bounding eastern Africa, and the Strait of Hormuz, are the least affected (<1 m).  more » « less
Award ID(s):
1917500
PAR ID:
10490501
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Geophysical Journal International
Volume:
237
Issue:
1
ISSN:
0956-540X
Format(s):
Medium: X Size: p. 288-301
Size(s):
p. 288-301
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Tsunamis from earthquakes of various magnitudes have affected Cascadia in the past. Simulations ofMw7.5–9.2 earthquake constrained by earthquake rupture physics and geodetic locking models show thatMw≥ 8.5 events initiating in the middle segments of the subduction zone can create coastal tsunami amplitudes comparable to those from the largest expected event. Our rupture and tsunami simulations reveal that the concave coastline geometry of the Pacific Northwest coastline focuses tsunami energy between latitudes 44° and 45° in Oregon. The possible coastal tsunami amplitudes are largely insensitive to the choice of slip model for a given magnitude. These results are useful for identifying the most hazardous segments of the subduction zone and demonstrate that a worst‐case rupture scenario does not uniquely yield the worst‐case tsunami scenario at a given location. 
    more » « less
  2. The Mediterranean Hellenic Arc subduction zone (HASZ) has generatedseveral Mw>=8 earthquakes and tsunamis.Seismic-probabilistic tsunami hazard assessment typically utilizesuniform or stochastic earthquake models, which may not represent dynamicrupture and tsunami generation complexity. We present an ensemble of ten3D dynamic rupture earthquake scenarios for the HASZ, utilizing arealistic slab geometry. Our simplest models use uniform along-arcpre-stresses or a single circular initial stress asperity. We thenintroduce progressively more complex models varying initial shear stressalong-arc, multiple asperities based on scale-dependent critical slipweakening distance, and a most complex model blending all aforementionedheterogeneities. Thereby, regional initial conditions are constrainedwithout relying on detailed geodetic locking models. Varying hypocenterlocations in the simplest, homogeneous model leads to different rupturespeeds and moment magnitudes. We observe dynamic fault slip penetratingthe shallow slip-strengthening region and affecting seafloor uplift.Off-fault plastic deformation can double vertical seafloor uplift. Asingle-asperity model generates a Mw~8 scenarioresembling the 1303 Crete earthquake. Using along-strike varying initialstresses results in Mw~8.0-8.5 dynamic rupture scenarioswith diverse slip rates and uplift patterns. The model with the mostheterogeneous initial conditions yields a Mw~7.5scenario. Dynamic rupture complexity in prestress and fracture energytends to lower earthquake magnitude but enhances tsunamigenicdisplacements. Our results offer insights into the dynamics of potentiallarge Hellenic Arc megathrust earthquakes and may inform futurephysics-based joint seismic and tsunami hazard assessments. 
    more » « less
  3. SUMMARY Observations of historical tsunami earthquakes reveal that ruptures of these earthquakes propagate slowly at shallow depth with longer duration, depletion in high-frequency radiation and larger discrepancy of Mw–Ms than ordinary megathrust earthquakes. They can effectively generate tsunami and lead to huge damage to regional populated areas near the coast. In this study, we use a recently developed dynamic earthquake simulator to explore tsunami earthquake generation from a physics-based modelling point of view. We build a shallow-dipping subduction zone model in which locally locked, unstable patches (asperities) are distributed on a conditionally stable subduction interface at shallow depth. The dynamic earthquake simulator captures both quasi-static and dynamic processes of earthquake cycles. We find that earthquakes can nucleate on these asperities and propagate into the surrounding conditionally stable zone at slow speeds, generating tsunami earthquakes. A high normal stress asperity, representing a subducted seamount, can act as an asperity in some events but as a barrier in other events over multiple earthquake cycles. Low normal stress asperities typically act as asperities in tsunami earthquakes. The degree of velocity-weakening in the conditionally stable zone, which may sustain rupture at different speeds or stop rupture, is critical for tsunami earthquake generation and affects its recurrence interval. Distributed asperities may rupture in isolated events separated by tens of years, or in a sequence of events separated by hours to days, or in one large event in a cascade fashion, demonstrating complex interactions among them. The recurrence interval on a high normal stress asperity is much larger than that on low normal stress asperities. These modelling results shed lights on the observations from historical tsunami earthquakes, including the 1994 and 2006 Java tsunami earthquakes and 2010 Mentawai tsunami earthquake. 
    more » « less
  4. Abstract Subduction zones host some of Earth's most damaging natural hazards, including megathrust earthquakes and earthquake‐induced tsunamis. A major control on the initiation and rupture characteristics of subduction megathrust earthquakes is how the coupled zone along the subduction interface accumulates elastic strain between events. We present results from observations of slow slip events (SSEs) in Cascadia occurring during the interseismic period downdip of the fully coupled zone, which imply that the orientation of strain accumulation within the coupled zone can vary with depth. Interseismic GPS motions suggest that forces derived from relative plate motions across a shallow, offshore locked plate interface dominate over decadal timescales. Deeper on the plate interface, below the locked (seismogenic) patch, slip during SSEs dominantly occurs in the updip direction, reflecting a dip‐parallel force acting on the slab, such as slab pull. This implies that in subduction zones with obliquely convergent plate motions, the seismogenic zone of the megathrust is loaded by forces acting in two discrete directions, leading to a depth‐varying orientation of strain accumulation on the plate interface. 
    more » « less
  5. ABSTRACT A major earthquake ruptured the Cascadia subduction zone (CSZ) on 26 January 1700. Key paleoseismic evidence associated with this event include tsunami deposits, stratigraphic evidence of coastal coseismic subsidence, written Japanese records of a tsunami unaccompanied by earthquake shaking, and margin-wide turbidites found offshore and in lacustrine environments. Despite this wealth of independent clues, important details about this event remain unresolved. Dating uncertainties do not conclusively establish whether the proxies are from one earthquake or a sequence of them, and we have limited knowledge of the likely slip distributions of the event or events. Here, we use a catalog of 37,500 candidate synthetic ruptures between Mw 7.8 and 9.2 and simulate their resulting coseismic deformation and tsunami inundation. Each model is then compared against estimated Japan tsunami arrivals, regional coastal subsidence records, and local paleotsunami deposits mapped at six different coastal marshes and one coastal lake along the CSZ. We find that seven full-margin ruptures with a median magnitude of Mw 9.1 satisfy all three constraints. We favor one Mw 9.11 model that best matches all site paleoseismic observations and suggests that the Cascadia megathrust slipped up to ∼30 m and must have shallow geodetic coupling. We also find that some sequences composed of three or four ruptures can still satisfy the observations, yet no sequences of two ruptures can. Sequences are differentiated into three groups based on whether they contain a mainshock rupture located in the south (>44° N) or further north. All sequences contain unruptured portions of the megathrust and most contain mainshocks with peak slip above 40 m. The fit of the geologic evidence from sequences is poor in comparison to single-event models. Therefore, sequences are generally less favored compared to full-margin events. 
    more » « less