skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Algorithms for Parallel Generic hp -Adaptive Finite Element Software
Thehp-adaptive finite element method—where one independently chooses the mesh size (h) and polynomial degree (p) to be used on each cell—has long been known to have better theoretical convergence properties than eitherh- orp-adaptive methods alone. However, it is not widely used, owing at least in part to the difficulty of the underlying algorithms and the lack of widely usable implementations. This is particularly true when used with continuous finite elements. Herein, we discuss algorithms that are necessary for a comprehensive and generic implementation ofhp-adaptive finite element methods on distributed-memory, parallel machines. In particular, we will present a multistage algorithm for the unique enumeration of degrees of freedom suitable for continuous finite element spaces, describe considerations for weighted load balancing, and discuss the transfer of variable size data between processes. We illustrate the performance of our algorithms with numerical examples and demonstrate that they scale reasonably up to at least 16,384 message passage interface processes. We provide a reference implementation of our algorithms as part of the open source librarydeal.II.  more » « less
Award ID(s):
1821210 1835673
PAR ID:
10490639
Author(s) / Creator(s):
;
Editor(s):
na
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Transactions on Mathematical Software
Volume:
49
Issue:
3
ISSN:
0098-3500
Page Range / eLocation ID:
1 to 26
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We derive a residual-based a posteriori error estimator for the conforming hp -Adaptive Finite Element Method ( hp -AFEM) for the steady state Stokes problem describing the slow motion of an incompressible fluid. This error estimator is obtained by extending the idea of a posteriori error estimation for the classical h -version of AFEM. We also establish the reliability and efficiency of the error estimator. The proofs are based on the well-known Clément-type interpolation operator introduced in [28] in the context of the hp -AFEM. Numerical experiments show the performance of an adaptive hp-FEM algorithm using the proposed a posteriori error estimator. 
    more » « less
  2. This work studies three multigrid variants for matrix-free finite-element computations on locally refined meshes: geometric local smoothing, geometric global coarsening (both h -multigrid), and polynomial global coarsening (a variant of p -multigrid). We have integrated the algorithms into the same framework—the open source finite-element library deal.II —, which allows us to make fair comparisons regarding their implementation complexity, computational efficiency, and parallel scalability as well as to compare the measurements with theoretically derived performance metrics. Serial simulations and parallel weak and strong scaling on up to 147,456 CPU cores on 3,072 compute nodes are presented. The results obtained indicate that global-coarsening algorithms show a better parallel behavior for comparable smoothers due to the better load balance, particularly on the expensive fine levels. In the serial case, the costs of applying hanging-node constraints might be significant, leading to advantages of local smoothing, even though the number of solver iterations needed is slightly higher. When using p - and h -multigrid in sequence ( hp -multigrid), the results indicate that it makes sense to decrease the degree of the elements first from a performance point of view due to the cheaper transfer. 
    more » « less
  3. Stencil computations are widely used to simulate the change of state of physical systems across a multidimensional grid over multiple timesteps. The state-of-the-art techniques in this area fall into three groups: cache-aware tiled looping algorithms, cache-oblivious divide-and-conquer trapezoidal algorithms, and Krylov subspace methods. In this article, we present two efficient parallel algorithms for performing linear stencil computations. Current direct solvers in this domain are computationally inefficient, and Krylov methods require manual labor and mathematical training. We solve these problems for linear stencils by using discrete Fourier transforms preconditioning on a Krylov method to achieve a direct solver that is both fast and general. Indeed, while all currently available algorithms for solving general linear stencils perform Θ(NT) work, whereNis the size of the spatial grid andTis the number of timesteps, our algorithms performo(NT) work. To the best of our knowledge, we give the first algorithms that use fast Fourier transforms to compute final grid data by evolving the initial data for many timesteps at once. Our algorithms handle both periodic and aperiodic boundary conditions and achieve polynomially better performance bounds (i.e., computational complexity and parallel runtime) than all other existing solutions. Initial experimental results show that implementations of our algorithms that evolve grids of roughly 107cells for around 105timesteps run orders of magnitude faster than state-of-the-art implementations for periodic stencil problems, and 1.3× to 8.5× faster for aperiodic stencil problems. Code Repository:https://github.com/TEAlab/FFTStencils 
    more » « less
  4. Abstract We present an approach for the inclusion of nonspherical constituents in high-resolutionN-body discrete element method (DEM) simulations. We use aggregates composed of bonded spheres to model nonspherical components. Though the method may be applied more generally, we detail our implementation in the existingN-body codepkdgrav. It has long been acknowledged that nonspherical grains confer additional shear strength and resistance to flow when compared with spheres. As a result, we expect that rubble-pile asteroids will also exhibit these properties and may behave differently than comparable rubble piles composed of idealized spheres. Since spherical particles avoid some significant technical challenges, most DEM gravity codes have used only spherical particles or have been confined to relatively low resolutions. We also discuss the work that has gone into improving performance with nonspherical grains, building onpkdgrav's existing leading-edge computational efficiency among DEM gravity codes. This allows for the addition of nonspherical shapes while maintaining the efficiencies afforded bypkdgrav's tree implementation and parallelization. As a test, we simulated the gravitational collapse of 25,000 nonspherical bodies in parallel. In this case, the efficiency improvements allowed for an increase in speed by nearly a factor of 3 when compared with the naive implementation. Without these enhancements, large runs with nonspherical components would remain prohibitively expensive. Finally, we present the results of several small-scale tests: spin-up due to the YORP effect, tidal encounters, and the Brazil nut effect. In all cases, we find that the inclusion of nonspherical constituents has a measurable impact on simulation outcomes. 
    more » « less
  5. Abstract Hexagonal boron nitride (h‐BN) is a layered inorganic synthetic crystal exhibiting high temperature stability and high thermal conductivity. As a ceramic material it has been widely used for thermal management, heat shielding, lubrication, and as a filler material for structural composites. Recent scientific advances in isolating atomically thin monolayers from layered van der Waals crystals to study their unique properties has propelled research interest in mono/few layeredh‐BN as a wide bandgap insulating support for nanoscale electronics, tunnel barriers, communications, neutron detectors, optics, sensing, novel separations, quantum emission from defects, among others. Realizing these futuristic applications hinges on scalable cost‐effective high‐qualityh‐BN synthesis. Here, the authors review scalable approaches of high‐quality mono/multilayerh‐BN synthesis, discuss the challenges and opportunities for each method, and contextualize their relevance to emerging applications. Maintaining a stoichiometric balance B:N = 1 as the atoms incorporate into the growing layered crystal and maintaining stacking order between layers during multi‐layer synthesis emerge as some of the main challenges forh‐BN synthesis and the development of processes to address these aspects can inform and guide the synthesis of other layered materials with more than one constituent element. Finally, the authors contextualizeh‐BN synthesis efforts along with quality requirements for emerging applications via a technological roadmap. 
    more » « less