skip to main content

Title: Coral thermal stress and bleaching enrich and restructure reef microbial communities via altered organic matter exudation

Coral bleaching is a well-documented and increasingly widespread phenomenon in reefs across the globe, yet there has been relatively little research on the implications for reef water column microbiology and biogeochemistry. A mesocosm heating experiment and bottle incubation compared how unbleached and bleached corals alter dissolved organic matter (DOM) exudation in response to thermal stress and subsequent effects on microbial growth and community structure in the water column. Thermal stress of healthy corals tripled DOM flux relative to ambient corals. DOM exudates from stressed corals (heated and/or previously bleached) were compositionally distinct from healthy corals and significantly increased growth of bacterioplankton, enriching copiotrophs and putative pathogens. Together these results demonstrate how the impacts of both short-term thermal stress and long-term bleaching may extend into the water column, with altered coral DOM exudation driving microbial feedbacks that influence how coral reefs respond to and recover from mass bleaching events.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Biology
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Coral reefs are the world’s most diverse marine ecosystems that provide resources and services that benefit millions of people globally. Yet, coral reefs have recently experienced an increase in the frequency and intensity of thermal-stress events that are causing coral bleaching. Coral bleaching is a result of the breakdown of the symbiosis between corals and their symbiotic microalgae, causing the loss of pigments and symbionts, giving corals a pale, bleached appearance. Bleaching can be temporary or fatal for corals, depending on the species, the geographic location, historical conditions, and on local and regional influences. Indeed, marine heat waves are the greatest threat to corals worldwide. Here we compile a Global Coral-Bleaching Database (GCBD) that encompasses 34,846 coral bleaching records from 14,405 sites in 93 countries, from 1980–2020. The GCBD provides vital information on the presence or absence of coral bleaching along with site exposure, distance to land, mean turbidity, cyclone frequency, and a suite of sea-surface temperature metrics at the times of survey.

    more » « less
  2. Abstract

    Coral reefs are increasingly exposed to elevated temperatures that can cause coral bleaching and high levels of mortality of corals and associated organisms. The temperature threshold for coral bleaching depends on the acclimation and adaptation of corals to the local maximum temperature regime. However, because of larval dispersal, coral populations can receive larvae from corals that are adapted to very different temperature regimes. We combine an offline particle tracking routine with output from a high‐resolution physical oceanographic model to investigate whether connectivity of coral larvae between reefs of different thermal regimes could alter the thermal stress threshold of corals. Our results suggest that larval transport between reefs of widely varying temperatures is likely in the Coral Triangle and that accounting for this connectivity may be important in bleaching predictions. This has important implications in conservation planning, because connectivity may allow some reefs to have an inherited heat tolerance that is higher or lower than predicted based on local conditions alone.

    more » « less
  3. Abstract

    Thermal‐stress events that cause coral bleaching and mortality have recently increased in frequency and severity. Yet few studies have explored conditions that moderate coral bleaching. Given that high light and high ocean temperature together cause coral bleaching, we explore whether corals at turbid localities, with reduced light, are less likely to bleach during thermal‐stress events than corals at other localities. We analyzed coral bleaching, temperature, and turbidity data from 3,694 sites worldwide with a Bayesian model and found thatKd490, a measurement positively related to turbidity, between 0.080 and 0.127 reduced coral bleaching during thermal‐stress events. Approximately 12% of the world's reefs exist within this “moderating turbidity” range, and 30% of reefs that have moderating turbidity are in the Coral Triangle. We suggest that these turbid nearshore environments may provide some refuge through climate change, but these reefs will need high conservation status to sustain them close to dense human populations.

    more » « less
  4. Abstract

    Corals of the eastern tropical Pacific live in a marginal and oceanographically dynamic environment. Along the Pacific coast of Panamá, stronger seasonal upwelling in the Gulf of Panamá in the east transitions to weaker upwelling in the Gulf of Chiriquí in the west, resulting in complex regional oceanographic conditions that drive differential coral‐reef growth. Over millennial timescales, reefs in the Gulf of Chiriquí recovered more quickly from climatic disturbances compared with reefs in the Gulf of Panamá. In recent decades, corals in the Gulf of Chiriquí have also had higher growth rates than in the Gulf of Panamá. As the ocean continues to warm, however, conditions could shift to favor the growth of corals in the Gulf of Panamá, where upwelling may confer protection from high‐temperature anomalies. Here we describe the recent spatial and temporal variability in surface oceanography of nearshore environments in Pacific Panamá and compare those conditions with the dynamics of contemporary coral‐reef communities during and after the 2016 coral‐bleaching event. Although both gulfs have warmed significantly over the last 150 yr, the annual thermal maximum in the Gulf of Chiriquí is increasing faster, and ocean temperatures there are becoming more variable than in the recent past. In contrast to historical trends, we found that coral cover, coral survival, and coral growth rates were all significantly higher in the Gulf of Panamá. Corals bleached extensively in the Gulf of Chiriquí following the 2015–2016 El Niño event, whereas upwelling in the Gulf of Panamá moderated the high temperatures caused by El Niño, allowing the corals largely to escape thermal stress. As the climate continues to warm, upwelling zones may offer a temporary and localized refuge from the thermal impacts of climate change, while reef growth in the rest of the eastern tropical Pacific continues to decline.

    more » « less
  5. Abstract

    Mass thermal bleaching events are a primary threat to coral reefs, yet the sublethal impacts, particularly on energetics and reproduction, are poorly characterized. Given that the persistence of coral populations is contingent upon the reproduction of individuals that survive disturbances, there is an urgent need to understand the sublethal effects of bleaching on reproductive output to accurately predict coral recovery rates. In 2019, the French Polynesian island of Mo’orea experienced a severe mass bleaching event accompanied by widespread coral mortality. At the most heavily impacted sites, we observedAcropora hyacinthusindividuals that were resistant to bleaching, alongside colonies that bleached but showed signs of symbiont recovery shortly after the bleaching event. We collected fragments fromA. hyacinthuscolonies five months post-bleaching and, using energetic assays and histological measurements, examined the physiological and reproductive consequences of these two distinct heat stress responses. Despite healthy appearances in both resistant and recovered corals, we found that recovered colonies had significantly reduced energy reserves compared to resistant colonies. In addition, we detected compound effects of stress on reproduction: recovered colonies displayed both a lower probability of containing gametes and lower fecundity per polyp. Our results indicate that bleaching inflicts an energetic constraint on the concurrent re-accumulation of energy reserves and development of reproductive material, with decreased reproductive potential of survivors possibly hampering overall reef resilience. These findings highlight the presence of intraspecific responses to bleaching and the importance of considering multiple trajectories for individual species when predicting population recovery following disturbance.

    more » « less