skip to main content


Title: Momentum power spectrum of SDSS galaxies by massE cosmic ruler: 2.1×improvement in measure of growth rate
ABSTRACT

Peculiar motion of galaxies probes the structure growth in the universe. In this study, we employ the galaxy stellar mass-binding energy (massE) relation with only two nuisance parameters to build the largest peculiar-velocity (PV) catalogue to date, consisting of 229 890 ellipticals from the main galaxy sample (MGS) of the Sloan Digital Sky Survey (SDSS). We quantify the distribution of the massE-based distances in individual narrow redshift bins (dz = 0.005), and then estimate the PV of each galaxy based on its offset from the Gaussian mean of the distribution. As demonstrated with the Uchuu-SDSS mock data, the derived PV and momentum power spectra are insensitive to accurate calibration of the massE relation itself, enabling measurements out to a redshift of 0.2, well beyond the current limit of z = 0.1 using other galaxy scaling laws. We then measure the momentum power spectrum and demonstrate that it remains almost unchanged if varying significantly the redshift bin size within which the distance is measured, as well as the intercept and slope of the massE relation, respectively. By fitting the spectra using the perturbation theory model with four free parameters, fσ8 is constrained to fσ8 = 0.459$^{+0.068}_{-0.069}$ over Δz = 0.02–0.2, 0.416$^{+0.074}_{-0.076}$ over Δz = 0.02–0.1, and 0.526$^{+0.133}_{-0.148}$ over Δz = 0.1–0.2. The error of fσ8 is 2.1 times smaller than that by the redshift space distortion (RSD) of the same sample. A Fisher matrix forecast illustrates that the constraint on fσ8 from the massE-based PV can potentially exceed that from the stage-IV RSD in late universe (z<0.5).

 
more » « less
NSF-PAR ID:
10490689
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
528
Issue:
3
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 4922-4940
Size(s):
["p. 4922-4940"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Distance-redshift diagrams probe expansion history of the Universe. We show that the stellar mass-binding energy (massE) relation of galaxies proposed in our previous study offers a new distance ruler at cosmic scales. By using elliptical galaxies in the main galaxy sample of the Sloan Digital Sky Survey Data Release 7, we construct a distance-redshift diagram over the redshift range from 0.05 to 0.2 with the massE ruler. The best-fit dark energy density is 0.675 ± 0.079  for flat Λ-cold dark matter (ΛCDM) model, consistent with those by other probes. At the median redshift of 0.11, the median distance is estimated to have a fractional error of 0.34 per cent, much lower than those by supernova (SN) Ia and baryonic acoustic oscillation (BAO) and even exceeding their future capability at this redshift. The above low-$\mathit{ z}$ measurement is useful for probing dark energy that dominates at the late Universe. For a flat dark energy equation of state model (flat wCDM), the massE alone constrains w to an error that is only a factor of 2.2, 1.7, and 1.3 times larger than those by BAO, SN Ia, and cosmic microwave background (CMB), respectively.

     
    more » « less
  2. ABSTRACT

    Powerful outflows are thought to play a critical role in galaxy evolution and black hole growth. We present the first large-scale systematic study of ionized outflows in paired galaxies and post-mergers compared to a robust control sample of isolated galaxies. We isolate the impact of the merger environment to determine if outflow properties depend on merger stage. Our sample contains ∼4000 paired galaxies and ∼250 post-mergers in the local universe (0.02 ≤ z ≤ 0.2) from the Sloan Digital Sky Survey Data Release 7 (SDSS DR 7) matched in stellar mass, redshift, local density of galaxies, and [O iii] λ5007 luminosity to a control sample of isolated galaxies. By fitting the [O iii] λ5007 line, we find ionized outflows in ∼15 per cent of our entire sample. Outflows are much rarer in star-forming galaxies compared to active galactic nuclei (AGNs), and outflow incidence and velocity increase with [O iii] λ5007 luminosity. Outflow incidence is significantly elevated in the optical + mid-infrared selected AGN compared to purely optical AGN; over 60 per cent show outflows at the highest luminosities ($L_{\mathrm{[OIII]~\lambda 5007}}\, \gtrsim$ 1042 erg s−1), suggesting mid-infrared AGN selection favours galaxies with powerful outflows, at least for higher [O iii] λ5007 luminosities. However, we find no statistically significant difference in outflow incidence, velocity, and luminosity in mergers compared to isolated galaxies, and there is no dependence on merger stage. Therefore, while interactions are predicted to drive gas inflows and subsequently trigger nuclear star formation and accretion activity, when the power source of the outflow is controlled for, the merging environment has no further impact on the large-scale ionized outflows as traced by [O iii] λ5007.

     
    more » « less
  3. ABSTRACT We use a simulation-based modelling approach to analyse the anisotropic clustering of the BOSS LOWZ sample over the radial range $0.4 \, h^{-1} \, \mathrm{Mpc}$ to $63 \, h^{-1} \, \mathrm{Mpc}$, significantly extending what is possible with a purely analytic modelling framework. Our full-scale analysis yields constraints on the growth of structure that are a factor of two more stringent than any other study on large scales at similar redshifts. We infer fσ8 = 0.471 ± 0.024 at $z$ ≈ 0.25, and fσ8 = 0.430 ± 0.025 at $z$ ≈ 0.40; the corresponding ΛCDM predictions of the Planck cosmic microwave background (CMB) analysis are 0.470 ± 0.006 and 0.476 ± 0.005, respectively. Our results are thus consistent with Planck, but also follow the trend seen in previous low-redshift measurements of fσ8 falling slightly below the ΛCDM + CMB prediction. We find that small- and large-radial scales yield mutually consistent values of fσ8, but there are 1−2.5σ hints of small scales ($\lt 10 \, h^{-1} \, \mathrm{Mpc}$) preferring lower values for fσ8 relative to larger scales. We analyse the constraining power of the full range of radial scales, finding that most of the multipole information about fσ8 is contained in the scales $2 \, h^{-1} \, \mathrm{Mpc}\lesssim s \lesssim 20 \, h^{-1} \, \mathrm{Mpc}$. Evidently, once the cosmological information of the quasi-to-nonlinear regime has been harvested, large-scale modes contain only modest additional information about structure growth. Finally, we compare predictions for the galaxy–galaxy lensing amplitude of the two samples against measurements from SDSS and assess the lensing-is-low effect in light of our findings. 
    more » « less
  4. ABSTRACT

    Ly α forest decomposed into Voigt profile components allows us to study clustering properties of the intergalactic-medium and its dependence on various physical quantities. Here, we report the first detections of probability excess of low-z (i.e z < 0.48) Ly α absorber triplets over redshift-space scale of r∥ ≤ 8 pMpc (Mpc in physical units) with maximum amplitude of $8.76^{+1.96}_{-1.65}$ at a longitudinal separation of 1–2 pMpc. We measure non-zero three-point correlation ($\zeta = 4.76^{+1.98}_{-1.67}$) only at this scale with reduced three-point correlation Q = $0.95^{+0.39}_{-0.38}$. The measured ζ shows an increasing trend with increasing minimum H i column density (NH i) threshold while Q does not show any NH i dependence. About 88 per cent of the triplets contributing to ζ (at z ≤ 0.2) have nearby galaxies (whose distribution is known to be complete for ∼0.1L* at z < 0.1 and for ∼L* at z ∼ 0.25 within 20 arcsec to the quasar sightlines) within velocity separation of 500 km s−1 and median impact parameter of 405 pkpc. The measured impact parameters are consistent with majority of the identified triplets not originating from individual galaxies but tracing the underlying galaxy distribution. Frequency of occurrence of Broad-Ly α absorbers (b > 40 km s−1) in triplets (∼85 per cent) is factor ∼3 higher than that found among the full sample (∼32 per cent). Using four different cosmological simulations, we quantify the effect of peculiar velocities and feedback and show that most of the observed trends are broadly reproduced. However, ζ at small scales (r∥ < 1 pMpc) and its b-dependence found in simulations are inconsistent with observations. This could either be related to the failure of these simulations to reproduce the observed b and NH i distributions for NH i > 1014 cm−2 self-consistently or to the wide spread of signal-to-noise ratio in the observed data.

     
    more » « less
  5. ABSTRACT

    We present the RASS-MCMF catalogue of 8449 X-ray selected galaxy clusters over 25 000 deg2 of extragalactic sky. The accumulation of deep multiband optical imaging data, the development of the Multi-Component Matched Filter (MCMF) cluster confirmation algorithm, and the release of the DESI Legacy Survey DR10 catalogue makes it possible – for the first time, more than 30 yr after the launch of the ROSAT X-ray satellite – to identify the majority of the galaxy clusters detected in the second ROSAT All-Sky-Survey (RASS) source catalogue (2RXS). The resulting 90 per cent pure RASS-MCMF catalogue is the largest intracluster medium (ICM)-selected cluster sample to date. RASS-MCMF probes a large dynamic range in cluster mass spanning from galaxy groups to the most massive clusters. The cluster redshift distribution peaks at $z$ ∼ 0.1 and extends to redshifts $z$ ∼ 1. Out to $z$ ∼ 0.4, the RASS-MCMF sample contains more clusters per redshift interval (dN/dz) than any other ICM-selected sample. In addition to the main sample, we present two subsamples with 6912 and 5506 clusters, exhibiting 95 per cent and 99 per cent purity, respectively. We forecast the utility of the sample for a cluster cosmological study, using realistic mock catalogues that incorporate most observational effects, including the X-ray exposure time and background variations, the existence likelihood selection and the impact of the optical cleaning with the algorithm MCMF. Using realistic priors on the observable–mass relation parameters from a DES-based weak lensing analysis, we estimate the constraining power of the RASS-MCMF×DES sample to be of 0.026, 0.033, and 0.15 (1σ) on the parameters Ωm, σ8, and $w$, respectively.

     
    more » « less