Abstract The dynamical evolution of the solar system is chaotic with a Lyapunov time of only ∼5 Myr for the inner planets. Due to the chaos it is fundamentally impossible to accurately predict the solar system’s orbital evolution beyond ∼50 Myr based on present astronomical observations. We have recently developed a method to overcome the problem by using the geologic record to constrain astronomical solutions in the past. Our resulting optimal astronomical solution (called ZB18a) shows exceptional agreement with the geologic record to ∼58 Ma (Myr ago) and a characteristic resonance transition around 50 Ma. Here we show that ZB18a and integration of Earth’s and Mars’ spin vector based on ZB18a yield reduced variations in Earth’s and Mars’ orbital inclination and Earth’s obliquity (axial tilt) from ∼58 to ∼48 Ma—the latter being consistent with paleoclimate records. The changes in the obliquities have important implications for the climate histories of Earth and Mars. We provide a detailed analysis of solar system frequencies (gandsmodes) and show that the shifts in the variation in Earth’s and Mars’ orbital inclination and obliquity around 48 Ma are associated with the resonance transition and caused by changes in the contributions to the superposition ofsmodes, plusg–smode interactions in the inner solar system. Theg–smode interactions and the resonance transition (consistent with geologic data) are unequivocal manifestations of chaos. Dynamical chaos in the solar system hence not only affects its orbital properties but also the long-term evolution of planetary climate through eccentricity and the link between inclination and axial tilt.
more »
« less
Passing Stars as an Important Driver of Paleoclimate and the Solar System’s Orbital Evolution
Abstract Reconstructions of the paleoclimate indicate that ancient climatic fluctuations on Earth are often correlated with variations in its orbital elements. However, the chaos inherent in the solar system’s orbital evolution prevents numerical simulations from confidently predicting Earth’s past orbital evolution beyond 50–100 Myr. Gravitational interactions among the Sun’s planets and asteroids are believed to set this limiting time horizon, but most prior works approximate the solar system as an isolated system and neglect our surrounding Galaxy. Here we present simulations that include the Sun’s nearby stellar population, and we find that close-passing field stars alter our entire planetary system’s orbital evolution via their gravitational perturbations on the giant planets. This shortens the timespan over which Earth’s orbital evolution can be definitively known by a further ∼10%. In particular, in simulations that include an exceptionally close passage of the Sun-like star HD 7977 2.8 Myr ago, new sequences of Earth’s orbital evolution become possible in epochs before ∼50 Myr ago, which includes the Paleocene–Eocene Thermal Maximum. Thus, simulations predicting Earth’s past orbital evolution before ∼50 Myr ago must consider the additional uncertainty from passing stars, which can open new regimes of past orbital evolution not seen in previous modeling efforts.
more »
« less
- Award ID(s):
- 2405121
- PAR ID:
- 10490819
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 962
- Issue:
- 2
- ISSN:
- 2041-8205
- Format(s):
- Medium: X Size: Article No. L28
- Size(s):
- Article No. L28
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Given the inexorable increase in the Sun’s luminosity, Earth will exit the habitable zone in ∼1 Gyr. There is a negligible chance that Earth’s orbit will change during that time through internal Solar System dynamics. However, there is a ∼ 1 per cent chance per Gyr that a star will pass within 100 au of the Sun. Here, we use N-body simulations to evaluate the possible evolutionary pathways of the planets under the perturbation from a close stellar passage. We find a ∼ 92 per cent chance that all eight planets will survive on orbits similar to their current ones if a star passes within 100 au of the Sun. Yet a passing star may disrupt the Solar System, by directly perturbing the planets’ orbits or by triggering a dynamical instability. Mercury is the most fragile, with a destruction rate (usually via collision with the Sun) higher than that of the four giant planets combined. The most probable destructive pathways for Earth are to undergo a giant impact (with the Moon or Venus) or to collide with the Sun. Each planet may find itself on a very different orbit than its present-day one, in some cases with high eccentricities or inclinations. There is a small chance that Earth could end up on a more distant (colder) orbit, through re-shuffling of the system’s orbital architecture, ejection into interstellar space (or into the Oort cloud), or capture by the passing star. We quantify plausible outcomes for the post-flyby Solar System.more » « less
-
ABSTRACT Dynamical instabilities among giant planets are thought to be nearly ubiquitous and culminate in the ejection of one or more planets into interstellar space. Here, we perform N-body simulations of dynamical instabilities while accounting for torques from the galactic tidal field. We find that a fraction of planets that would otherwise have been ejected are instead trapped on very wide orbits analogous to those of Oort cloud comets. The fraction of ejected planets that are trapped ranges from 1 to 10 per cent, depending on the initial planetary mass distribution. The local galactic density has a modest effect on the trapping efficiency and the orbital radii of trapped planets. The majority of Oort cloud planets survive for Gyr time-scales. Taking into account the demographics of exoplanets, we estimate that one in every 200–3000 stars could host an Oort cloud planet. This value is likely an overestimate, as we do not account for instabilities that take place at early enough times to be affected by their host stars’ birth cluster or planet stripping from passing stars. If the Solar system’s dynamical instability happened after birth cluster dissolution, there is a ∼7 per cent chance that an ice giant was captured in the Sun’s Oort cloud.more » « less
-
ABSTRACT At least $$70\, {\rm per\, cent}$$ of massive OBA-type stars reside in binary or higher order systems. The dynamical evolution of these systems can lend insight into the origins of extreme phenomena such as X-ray binaries and gravitational wave sources. In one such dynamical process, the Eccentric Kozai–Lidov (EKL) mechanism, a third companion star alters the secular evolution of a binary system. For dynamical stability, these triple systems must have a hierarchical configuration. We explore the effects of a distant third companion’s gravitational perturbations on a massive binary’s orbital configuration before significant stellar evolution has taken place (≤10 Myr). We include tidal dissipation and general relativistic precession. With large (38 000 total) Monte Carlo realizations of massive hierarchical triples, we characterize imprints of the birth conditions on the final orbital distributions. Specifically, we find that the final eccentricity distribution over the range of 0.1–0.7 is an excellent indicator of its birth distribution. Furthermore, we find that the period distributions have a similar mapping for wide orbits. Finally, we demonstrate that the observed period distribution for approximately 10-Myr-old massive stars is consistent with EKL evolution.more » « less
-
ABSTRACT The majority of binary star systems that host exoplanets will spend the first portion of their lives within a star-forming cluster that may drive dynamical evolution of the binary-planet system. We perform numerical simulations of S-type planets, with masses and orbital architecture analogous to the Solar system’s four gas giants, orbiting within the influence of a $$0.5\, \mathrm{M}_{\odot }$$ binary companion. The binary-planet system is integrated simultaneously with an embedded stellar cluster environment. ∼10 per cent of our planetary systems are destabilized when perturbations from our cluster environment drive the binary periastron towards the planets. This destabilization occurs despite all of our systems being initialized with binary orbits that would allow stable planets in the absence of the cluster. The planet–planet scattering triggered in our systems typically results in the loss of lower mass planets and the excitement of the eccentricities of surviving higher mass planets. Many of our planetary systems that go unstable also lose their binary companions prior to cluster dispersal and can therefore masquerade as hosts of eccentric exoplanets that have spent their entire histories as isolated stars. The cluster-driven binary orbital evolution in our simulations can also generate planetary systems with misaligned spin–orbit angles. This is typically done as the planetary system precesses as a rigid disc under the influence of an inclined binary, and those systems with the highest spin–orbit angles should often retain their binary companion and possess multiple surviving planets.more » « less
An official website of the United States government
