skip to main content

Title: Environmental variation structures reproduction and recruitment in long‐lived mega‐herbivores: Galapagos giant tortoises

Migratory, long‐lived animals are an important focus for life‐history theory because they manifest extreme trade‐offs in life‐history traits: delayed maturity, low fecundity, variable recruitment rates, long generation times, and vital rates that respond to variation across environments. Galapagos tortoises are an iconic example: they are long‐lived, migrate seasonally, face multiple anthropogenic threats, and have cryptic early life‐history stages for which vital rates are unknown. From 2012 to 2021, we studied the reproductive ecology of two species of Galapagos tortoises (Chelonoidis porteriandC. donfaustoi) along elevation gradients that coincided with substantial changes in climate and vegetation productivity. Specifically, we (1) measured the body and reproductive condition of 166 adult females, (2) tracked the movements of 33 adult females using global positioning system telemetry, and monitored their body condition seasonally, (3) recorded nest temperatures, clutch characteristics, and egg survival from 107 nests, and (4) used radiotelemetry to monitor growth, survival, and movements of 104 hatchlings. We also monitored temperature and rainfall from field sites, and remotely sensed primary productivity along the elevation gradient. Our study showed that environmental variability, mediated by elevation, influenced vital rates of giant tortoises, specifically egg production by adult females and juvenile recruitment. Adult females were either elevational migrants or year‐round lowland residents. Migrants had higher body condition than residents, and body condition was positively correlated with the probability of being gravid. Nests occurred in the hottest, driest parts of the tortoise's range, between 6 and 165 m elevation. Clutch size increased with elevation, whereas egg survival decreased. Hatchling survival and growth were highest at intermediate elevations. Hatchlings dispersed rapidly to 100–750 m from their nests before becoming sedentary (ranging over <0.2 ha). Predicted future climates may impact the relationships between elevation and vital rates of Galapagos tortoises and other species living across elevation gradients. Resilience will be maximized by ensuring the connectivity of foraging and reproductive areas within the current and possible future elevational ranges of these species.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecological Monographs
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Comparative studies, across and within taxa, have made important contributions to our understanding of the evolutionary processes that promote phenotypic diversity. Trait variation along geographic gradients provides a convenient heuristic for understanding what drives and maintains diversity. Intraspecific trait variation along latitudinal gradients is well‐known, but elevational variation in the same traits is rarely documented. Trait variation along continuous elevational gradients, however, provides compelling evidence that individuals within a breeding population may experience different selective pressures.

    Our objectives were to quantify variation in a suite of traits along a continuous elevational gradient, evaluate whether individuals in the population experience different selective pressures along that gradient and quantify variation in migratory tendency along that gradient.

    We examined variation in a suite of 14 life‐history, morphological and behavioural traits, including migratory tendency, of yellow‐eyed juncos along a continuous 1000‐m elevational gradient in the Santa Catalina Mountains of Arizona.

    Many traits we examined varied along the elevational gradient. Nest survival and nestling growth rates increased, while breeding season length, renesting propensity and adult survival declined, with increasing elevation. We documented the migratory phenotype of juncos (partial altitudinal migrants) and show that individual migratory tendency is higher among females than males and increases with breeding elevation.

    Our data support the paradigm that variation in breeding season length is a major selective pressure driving life‐history variation along elevational gradients and that individuals breeding at high elevation pursue strategies that favour offspring quality over offspring quantity. Furthermore, a negative association between adult survival and breeding elevation and a positive association between nest survival and breeding elevation help explain both the downslope and reciprocal upslope seasonal migratory movements that characterize altitudinal migration in many birds. Our results demonstrate how detailed studies of intraspecific variation in suites of traits along environmental gradients can lend new insights into the evolutionary processes that promote diversification and speciation, the causes of migratory behaviour, and how animal populations will likely respond to climate change.

    more » « less
  2. Precise timing of life‐history transitions in predictably changing environments is hypothesized to aid in individual survival and reproductive success, by appropriately matching an animal's physiology and behavior with prevailing environmental conditions. Therefore, it is imperative for individuals to time energetically costly life‐history stages (i.e. reproduction) so they overlap with seasonal peaks in food abundance and quality. Female lifetime reproductive fitness is affected by several factors that influence energy balance, including arrival date, timing of egg production, and energetic condition. Therefore, any extra energetic costs during reproduction may negatively affect timing of egg production, and ultimately a female's fitness. For example, mounting an immunological response elicits a high energetic cost, and this transfer of resources towards cell and immune system maintenance could have direct negative effects on reproductive timing. In order to determine whether an immune challenge delays onset of breeding (i.e. egg production), we administered either a humoral immune challenge (keyhole limpet hemocyanin (KLH)) (treatment) or physiological saline (control) to free‐living female dark‐eyed juncosJunco hyemalisin the period immediately prior to egg‐laying (∼4 weeks). We found that KLH‐injected females artificially delayed clutch initiation when compared to control females. These data help to refine our understanding of how free‐living birds allocate resources between reproduction and self‐maintenance processes during the critical pre‐laying period of the annual cycle.

    more » « less
  3. Abstract

    Heterogeneity in the intrinsic quality and nutritional condition of individuals affects reproductive success and consequently fitness. Black brant (Branta bernicla nigricans) are long‐lived, migratory, specialist herbivores. Long migratory pathways and short summer breeding seasons constrain the time and energy available for reproduction, thus magnifying life‐history trade‐offs. These constraints, combined with long lifespans and trade‐offs between current and future reproductive value, provide a model system to examine the role of individual heterogeneity in driving life‐history strategies and individual heterogeneity in fitness. We used hierarchical Bayesian models to examine reproductive trade‐offs, modeling the relationships between within‐year measures of reproductive energy allocation and among‐year demographic rates of individual females breeding on the Yukon‐Kuskokwim Delta, Alaska, using capture–recapture and reproductive data from 1988 to 2014. We generally found that annual survival tended to be buffered against variation in reproductive investment, while breeding probability varied considerably over the range of clutch size‐laying date combinations. We provide evidence for relationships between breeding probability and clutch size, breeding probability and nest initiation date, and an interaction between clutch size and initiation date. Average lifetime clutch size also had a weak positive relationship with apparent survival probability. Our results support the use of demographic buffering strategies for black brant. These results also indirectly suggest associations among environmental conditions during growth, fitness, and energy allocation, highlighting the effects of early growth conditions on individual heterogeneity, and subsequently, lifetime reproductive investment.

    more » « less
  4. Abstract

    Parental care, mating dynamics and life history co‐evolve. Understanding the diversity of reproductive patterns found in nature is a major focus of evolutionary ecology research. Previous research suggests that the origin of parental care of eggs will be favoured when egg and adult death rates and juvenile survival are relatively high. However, the previous research that explored the link between care and life history did not account for among‐species variation in mating dynamics. As mating dynamics are generally expected to influence care, we explore, theoretically, the life‐history conditions (stage‐specific rates of maturation and survival) that favour parental care across three mating scenarios: reproductive rate (1) is unaffected by males (assuming that some males are present), (2) increases as male abundance increases or (3) decreases as male abundance increases. Across scenarios, all forms of care were most strongly favoured when egg and adult death rates, juvenile survival and female egg maturation rates were relatively high. When reproductive rate was unaffected by male abundance or increased as male abundance increased, as we might expect in systems in which females are mate‐limited, all forms of care were most strongly favoured when male egg maturation rate (i.e. the rate at which male eggs develop, mature and hatch) was moderate or high. When greater male abundance inhibited reproduction, which might occur in systems with intense male–male competition, all forms of care were most strongly favoured when male egg maturation rate was low‐to‐moderate. These results suggest that life history affects the evolution of parental care, and sex‐specific life history can interact with mating dynamics to influence the origin of care.

    more » « less
  5. Abstract

    Stressful juvenile developmental conditions can affect performance and fitness later in life. In holometabolous insects such as butterflies, development under stressful conditions may lead to smaller adult size, lower reproductive output, and shorter lifespan. However, how larval developmental stress affects energy intake and expenditure in adult individuals is poorly understood.

    We subjected last‐instar larvae ofSpeyeria mormoniaEdwards (Lepidoptera: Nymphalidae) to periodic dietary restriction (DR) to examine the allocation of energy and nutrients among different life history processes. We measured adult food intake, resting metabolic rate (RMR), metabolic flight capacity, lifespan, and reproductive output. Consistent with pressure to disperse from a poor environment while maintaining offspring number, we predicted that stressed individuals would have increased adult food intake and higher flight capacity.

    Adult body size was strongly reduced. Contrary to predictions, we found no compensatory adult feeding. Mass‐adjusted flight metabolic rate was reduced, suggesting poor dispersal capacity. Larval DR did not affect adult lifespan, nor did the rate of metabolic senescence change. Larval DR did affect RMR, as stressed females had a steeper slope between RMR and body mass, which may reflect differences in physiological activity due to condition.

    Fecundity decreased less than predicted based on body mass. Instead of investing in flight capacity, females increased relative allocation to reproduction, which may partly buffer against poor environmental conditions.

    Understanding the interplay of energy acquisition and allocation to life history traits across the life cycle is vital for predicting responses to environmental change.

    more » « less