skip to main content

Title: Evidence of cryptic methane cycling and non-methanogenic methylamine consumption in the sulfate-reducing zone of sediment in the Santa Barbara Basin, California

Abstract. The recently discovered cryptic methane cycle in the sulfate-reducing zone of marine and wetland sediment couples methylotrophic methanogenesis to anaerobic oxidation of methane (AOM). Here we present evidence of cryptic methane cycling activity within the upper regions of the sulfate-reducing zone, along a depth transect within the Santa Barbara Basin, off the coast of California, USA. The top 0–20 cm of sediment from each station was subjected to geochemical analyses and radiotracer incubations using 35S–SO42-, 14C–mono-methylamine, and 14C–CH4 to find evidence of cryptic methane cycling. Methane concentrations were consistently low (3 to 16 µM) across the depth transect, despite AOM rates increasing with decreasing water depth (from max 0.05 nmol cm−3 d−1 at the deepest station to max 1.8 nmol cm−3 d−1 at the shallowest station). Porewater sulfate concentrations remained high (23 to 29 mM), despite the detection of sulfate reduction activity from 35S–SO42- incubations with rates up to 134 nmol cm−3 d−1. Metabolomic analysis showed that substrates for methanogenesis (i.e., acetate, methanol and methylamines) were mostly below the detection limit in the porewater, but some samples from the 1–2 cm depth section showed non-quantifiable evidence of these substrates, indicating their rapid turnover. Estimated methanogenesis from mono-methylamine ranged from 0.2 to 0.5 nmol cm−3 d−1. Discrepancies between the rate constants (k) of methanogenesis (from 14C–mono-methylamine) and AOM (from either 14C–mono-methylamine-derived 14C–CH4 or from directly injected 14C–CH4) suggest the activity of a separate, concurrent metabolic process directly metabolizing mono-methylamine to inorganic carbon. We conclude that the results presented in this work show strong evidence of cryptic methane cycling occurring within the top 20 cm of sediment in the Santa Barbara Basin. The rapid cycling of carbon between methanogenesis and methanotropy likely prevents major build-up of methane in the sulfate-reducing zone. Furthermore, our data suggest that methylamine is utilized by both methanogenic archaea capable of methylotrophic methanogenesis and non-methanogenic microbial groups. We hypothesize that sulfate reduction is responsible for the additional methylamine turnover, but further investigation is needed to elucidate this metabolic activity.

more » « less
Award ID(s):
1852912 1829981
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Copernicus Publications on behalf of the European Geosciences Union
Date Published:
Journal Name:
Page Range / eLocation ID:
4377 to 4390
Subject(s) / Keyword(s):
["Santa Barbara Basin","oxygen minimum zone","methane","cryptic methane cycling","anaerobic oxidation of methane","AOM","methanogenesis","methylamine"]
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Documenting anaerobic microbial metabolisms in hypersaline perennially ice‐covered lakes in Antarctica further refines the environmental limits to life and may reveal rare biogeochemical mechanisms and/or novel microbial catalysts of elemental cycling. We assessed rates of sulfate reduction, methanogenesis, and anaerobic oxidation of methane using radiotracers and generated 16S rRNA gene libraries from the microbial communities inhabiting the deep calcium‐chloride‐rich brine and sediments of Lake Vanda, McMurdo Dry Valleys, Antarctica. Sulfate reduction rates were observed in surface sediments but not in the brine overlying the sediments. Methane formation through the methylotrophic, acetoclastic, and hydrogenotrophic pathways was quantified using14C‐labeled methylamine, acetate, and CO2, respectively, and methanogenesis was detected in both the brine and the sediments. Hydrogenotrophic methanogenesis rates were the highest of all substrates tested in the sediments, while methylotrophic methanogenesis was highest in the brines. Anaerobic oxidation of methane was below the limit of detection in both the brines and sediments. The major taxa ofBacteriaandArchaeadetected were most similar to organisms previously observed in hypersaline environments and included examples related to known sulfate‐reducing bacteria other thanDeltaproteobacteria(surprisingly, sulfate‐reducingDeltaproteobacteriawere not observed in this study), and both methanogenic and methanotrophicArchaea. These data indicate an active microbial community in the anoxic brine of Lake Vanda that while similar in terms of community structure and metabolism to other brine habitats, is uniquely evolved to survive in this extreme environment.

    more » « less
  2. As marine sediments are buried, microbial communities transition from sulfate-reduction to methane-production after sulfate is depleted. When this biogenic methane diffuses into the overlying sulfate-rich sediments, it forms a sulfate-methane transition zone (SMTZ) because sulfate reducers deplete hydrogen concentrations and make hydrogenotrophic methanogenesis exergonic in the reverse direction, a process called the anaerobic oxidation of methane (AOM). Microbial participation in these processes is often inferred from geochemistry, genes, and gene expression changes with sediment depth, using sedimentation rates to convert depth to time. Less is known about how natural sediments transition through these geochemical states transition in real-time. We examined 16S rRNA gene amplicon libraries and metatranscriptomes in microcosms of anoxic sediment from the White Oak River estuary, NC, with three destructively sampled replicates with methane added (586-day incubations) and three re-sampled un-amended replicates (895-day incubations). Sulfate dropped to a low value (∼0.3 mM) on similar days for both experiments (312 and 320 days, respectively), followed by a peak in hydrogen, intermittent increases in methane-cycling archaea starting on days 375 and 362 (mostly Methanolinea spp. and Methanosaeta spp., and Methanococcoides sp. ANME-3), and a methane peak 1 month later. However, methane δ 13 C values only show net methanogenesis 6 months after methane-cycling archaea increase and 4 months after the methane peak, when sulfate is consistently below 0.1 mM and hydrogen increases to a stable 0.61 ± 0.13 nM (days 553–586, n = 9). Sulfate-reducing bacteria (mostly Desulfatiglans spp. and Desulfosarcina sp. SEEP-SRB1) increase in relative abundance only during this period of net methane production, suggesting syntrophy with methanogens in the absence of sulfate. The transition from sulfate reduction to methane production in marine sediments occurs through a prolonged period of methane-cycling by methanogens at low sulfate concentrations, and steady growth of sulfate reducers along with methanogens after sulfate is depleted. 
    more » « less
  3. Abstract

    Water table depth and vegetation are key controls of methane (CH4) emissions from peatlands. Microtopography integrates these factors into features called microforms. Microforms often differ in CH4emissions, but microform‐dependent patterns of belowground CH4cycling remain less clearly resolved. To investigate the impact of microtopography on belowground CH4cycling, we characterized depth profiles of the community composition and activity of CH4‐cycling microbes using 16S rRNA amplicon sequencing, incubations, and measurements of porewater CH4concentration and isotopic composition from hummocks and lawns at Sallie's Fen in NH, USA. Geochemical proxies of methanogenesis and methanotrophy indicated that microforms differ in dominant microbial CH4cycling processes. Hummocks, where water table depth is lower, had higher porewater redox potential (Eh) and higher porewater δ13C‐CH4values in the upper 30 cm than lawns, where water table depth is closer to the peat surface. Porewater δ13C‐CH4and δD‐CH3D values were highest at the surface of hummocks where the ratio of methanotrophs to methanogens was also greatest. These results suggest that belowground CH4cycling in hummocks is more strongly regulated by methanotrophy, while in lawns methanogenesis is more dominant. We also investigated controls of porewater CH4chemistry. The ratio of the relative abundance of methanotrophs to methanogens was the strongest predictor of porewater CH4concentration and δ13C‐CH4, while vegetation composition had minimal influence. As microbial community composition was strongly influenced by redox conditions but not vegetation, we conclude that water table depth is a stronger control of belowground CH4cycling across microforms than vegetation.

    more » « less
  4. Abstract

    The sedimentary pyrite sulfur isotope (δ34S) record is an archive of ancient microbial sulfur cycling and environmental conditions. Interpretations of pyrite δ34S signatures in sediments deposited in microbial mat ecosystems are based on studies of modern microbial mat porewater sulfide δ34S geochemistry. Pyrite δ34S values often capture δ34S signatures of porewater sulfide at the location of pyrite formation. However, microbial mats are dynamic environments in which biogeochemical cycling shifts vertically on diurnal cycles. Therefore, there is a need to study how the location of pyrite formation impacts pyrite δ34S patterns in these dynamic systems. Here, we present diurnal porewater sulfide δ34S trends and δ34S values of pyrite and iron monosulfides from Middle Island Sinkhole, Lake Huron. The sediment–water interface of this sinkhole hosts a low‐oxygen cyanobacterial mat ecosystem, which serves as a useful location to explore preservation of sedimentary pyrite δ34S signatures in early Earth environments. Porewater sulfide δ34S values vary by up to ~25‰ throughout the day due to light‐driven changes in surface microbial community activity that propagate downwards, affecting porewater geochemistry as deep as 7.5 cm in the sediment. Progressive consumption of the sulfate reservoir drives δ34S variability, instead of variations in average cell‐specific sulfate reduction rates and/or sulfide oxidation at different depths in the sediment. The δ34S values of pyrite are similar to porewater sulfide δ34S values near the mat surface. We suggest that oxidative sulfur cycling and other microbial activity promote pyrite formation in and immediately adjacent to the microbial mat and that iron geochemistry limits further pyrite formation with depth in the sediment. These results imply that primary δ34S signatures of pyrite deposited in organic‐rich, iron‐poor microbial mat environments capture information about microbial sulfur cycling and environmental conditions at the mat surface and are only minimally affected by deeper sedimentary processes during early diagenesis.

    more » « less
  5. Abstract

    Deep marine sediments (>1mbsf) harbor ~26% of microbial biomass and are the largest reservoir of methane on Earth. Yet, the deep subsurface biosphere and controls on its contribution to methane production remain underexplored. Here, we use a multidisciplinary approach to examine methanogenesis in sediments (down to 295 mbsf) from sites with varying degrees of thermal alteration (none, past, current) at Guaymas Basin (Gulf of California) for the first time. Traditional (13C/12C and D/H) and multiply substituted (13CH3D and 12CH2D2) methane isotope measurements reveal significant proportions of microbial methane at all sites, with the largest signal at the site with past alteration. With depth, relative microbial methane decreases at differing rates between sites. Gibbs energy calculations confirm methanogenesis is exergonic in Guaymas sediments, with methylotrophic pathways consistently yielding more energy than the canonical hydrogenotrophic and acetoclastic pathways. Yet, metagenomic sequencing and cultivation attempts indicate that methanogens are present in low abundance. We find only one methyl-coenzyme M (mcrA) sequence within the entire sequencing dataset. Also, we identify a wide diversity of methyltransferases (mtaB, mttB), but only a few sequences phylogenetically cluster with methylotrophic methanogens. Our results suggest that the microbial methane in the Guaymas subsurface was produced over geologic time by relatively small methanogen populations, which have been variably influenced by thermal sediment alteration. Higher resolution metagenomic sampling may clarify the modern methanogen community. This study highlights the importance of using a multidisciplinary approach to capture microbial influences in dynamic, deep subsurface settings like Guaymas Basin.

    more » « less