skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evidence of cryptic methane cycling and non-methanogenic methylamine consumption in the sulfate-reducing zone of sediment in the Santa Barbara Basin, California
Abstract. The recently discovered cryptic methane cycle in the sulfate-reducing zone of marine and wetland sediment couples methylotrophic methanogenesis to anaerobic oxidation of methane (AOM). Here we present evidence of cryptic methane cycling activity within the upper regions of the sulfate-reducing zone, along a depth transect within the Santa Barbara Basin, off the coast of California, USA. The top 0–20 cm of sediment from each station was subjected to geochemical analyses and radiotracer incubations using 35S–SO42-, 14C–mono-methylamine, and 14C–CH4 to find evidence of cryptic methane cycling. Methane concentrations were consistently low (3 to 16 µM) across the depth transect, despite AOM rates increasing with decreasing water depth (from max 0.05 nmol cm−3 d−1 at the deepest station to max 1.8 nmol cm−3 d−1 at the shallowest station). Porewater sulfate concentrations remained high (23 to 29 mM), despite the detection of sulfate reduction activity from 35S–SO42- incubations with rates up to 134 nmol cm−3 d−1. Metabolomic analysis showed that substrates for methanogenesis (i.e., acetate, methanol and methylamines) were mostly below the detection limit in the porewater, but some samples from the 1–2 cm depth section showed non-quantifiable evidence of these substrates, indicating their rapid turnover. Estimated methanogenesis from mono-methylamine ranged from 0.2 to 0.5 nmol cm−3 d−1. Discrepancies between the rate constants (k) of methanogenesis (from 14C–mono-methylamine) and AOM (from either 14C–mono-methylamine-derived 14C–CH4 or from directly injected 14C–CH4) suggest the activity of a separate, concurrent metabolic process directly metabolizing mono-methylamine to inorganic carbon. We conclude that the results presented in this work show strong evidence of cryptic methane cycling occurring within the top 20 cm of sediment in the Santa Barbara Basin. The rapid cycling of carbon between methanogenesis and methanotropy likely prevents major build-up of methane in the sulfate-reducing zone. Furthermore, our data suggest that methylamine is utilized by both methanogenic archaea capable of methylotrophic methanogenesis and non-methanogenic microbial groups. We hypothesize that sulfate reduction is responsible for the additional methylamine turnover, but further investigation is needed to elucidate this metabolic activity.  more » « less
Award ID(s):
1852912 1829981 1830033
PAR ID:
10490947
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Copernicus Publications on behalf of the European Geosciences Union
Date Published:
Journal Name:
Biogeosciences
Volume:
20
Issue:
20
ISSN:
1726-4189
Page Range / eLocation ID:
4377 to 4390
Subject(s) / Keyword(s):
Santa Barbara Basin oxygen minimum zone methane cryptic methane cycling anaerobic oxidation of methane AOM methanogenesis methylamine
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Methylotrophic methanogenesis in the sulfate-rich zone of coastal and marine sediments couples with anaerobic oxidation of methane (AOM), forming the cryptic methane cycle. This study provides evidence of cryptic methane cycling in the sulfate-rich zone across a land–ocean transect of four stations–two brackish, one marine, and one hypersaline–within the Carpinteria Salt Marsh Reserve (CSMR), southern California, USA. Samples from the top 20 cm of sediment from the transect were analyzed through geochemical and molecular (16S rRNA) techniques, in-vitro methanogenesis incubations, and radiotracer incubations utilizing 35S-SO4, 14C-mono-methylamine, and 14C-CH4. Sediment methane concentrations were consistently low (3 to 28 µM) at all stations, except for the marine station, where methane increased with depth reaching 665 µM. Methanogenesis from mono-methylamine was detected throughout the sediment at all stations with estimated CH4 production rates in the sub-nanomolar to nanomolar range per cm3 sediment and day. 16S rRNA analysis identified methanogenic archaea (Methanosarcinaceae, Methanomassiliicoccales, and Methanonatronarchaeacea) capable of producing methane from methylamines in sediment where methylotrophic methanogenesis was found to be active. Metabolomic analysis of porewater showed mono-methylamine was mostly undetectable (<3 µM) or present in trace amounts (<10 µM) suggesting rapid metabolic turnover. In-vitro methanogenesis incubations of natural sediment showed no linear methane buildup, suggesting a process limiting methane emissions. AOM activity, measured with 14C-CH4, overlapped with methanogenesis from mono-methylamine activity at all stations, with rates ranging from 0.03 to 19.4 nmol cm− 3 d− 1. Geochemical porewater analysis showed the CSMR sediments are rich in sulfate and iron. Porewater sulfate concentrations (9–91 mM) were non-limiting across the transect, supporting sulfate reduction activity (1.5–2,506 nmol cm− 3 d− 1). Porewater sulfide and iron (II) profiles indicated that the sediment transitioned from a predominantly iron-reducing environment at the two brackish stations to a predominantly sulfate-reducing environment at the marine and hypersaline stations, which coincided with the presence of phyla (Desulfobacterota) involved in these processes. AOM activity overlapped with sulfate reduction and porewater iron (II) concentrations suggesting that AOM is likely coupled to sulfate and possibly iron reduction at all stations. However, 16S rRNA analysis identified anaerobic methanotrophs (ANME-2) only at the marine and hypersaline stations while putative methanogens were found in sediment across all stations. In one sediment horizon at the marine station, methanogen families (Methanosarcinaceae, Methanosaetaceae, Methanomassiliicoccales, and Methanoregulaceae) and ANME 2a,2b, and 2c groups were found together. Collectively, our data suggest that at the brackish stations methanogens alone may be involved in cryptic methane cycling, while at the marine and hypersaline stations both groups may be involved in the process. Differences in rate constants from incubations with 14C-labeled methane and mono-methylamine suggest a non-methanogenic process oxidizing mono-methylamine to inorganic carbon, likely mediated by sulfate-reducing bacteria. Understanding the potential competition of sulfate reducers with methanogens for mono-methylamine needs further investigation as it might be another important process responsible for low methane emissions in salt marshes. 
    more » « less
  2. Anaerobic oxidation of methane (AOM) is hypothesized to occur through reverse hydrogenotrophic methanogenesis in marine sediments because sulfate reducers pull hydrogen concentrations so low that reverse hydrogenotrophic methanogenesis is exergonic. If true, hydrogenotrophic methanogenesis can theoretically co-occur with sulfate reduction if the organic matter is so labile that fermenters produce more hydrogen than sulfate reducers can consume, causing hydrogen concentrations to rise. Finding accumulation of biologically-produced methane in sulfate-containing organic-rich sediments would therefore support the theory that AOM occurs through reverse hydrogenotrophic methanogenesis since it would signal the absence of net AOM in the presence of sulfate. Methods16S rRNA gene libraries were compared to geochemistry and incubations in high depth-resolution sediment cores collected from organic-rich Cape Lookout Bight, North Carolina. ResultsWe found that methane began to accumulate while sulfate is still abundant (6–8 mM). Methane-cycling archaeaANME-1,Methanosarciniales, andMethanomicrobialesalso increased at these depths. Incubations showed that methane production in the upper 16 cm in sulfate-rich sediments was biotic since it could be inhibited by 2-bromoethanosulfonoic acid (BES). DiscussionWe conclude that methanogens mediate biological methane production in these organic-rich sediments at sulfate concentrations that inhibit methanogenesis in sediments with less labile organic matter, and that methane accumulation and growth of methanogens can occur under these conditions as well. Our data supports the theory that H2concentrations, rather than the co-occurrence of sulfate and methane, control whether methanogenesis or AOM via reverse hydrogenotrophic methanogenesis occurs. We hypothesize that the high amount of labile organic matter at this site prevents AOM, allowing methane accumulation when sulfate is low but still present in mM concentrations. 
    more » « less
  3. Molecular hydrogen is produced by the fermentation of organic matter and consumed by organisms including hydrogenotrophic methanogens and sulfate reducers in anoxic marine sediment. The thermodynamic feasibility of these metabolisms depends strongly on organic matter reactivity and hydrogen concentrations; low organic matter reactivity and high hydrogen concentrations can inhibit fermentation so when organic matter is poor, fermenters might form syntrophies with methanogens and/or sulfate reducers who alleviate thermodynamic stress by keeping hydrogen concentrations low and tightly controlled. However, it is unclear how these metabolisms effect porewater hydrogen concentrations in natural marine sediments of different organic matter reactivities. MethodsWe measured aqueous concentrations of hydrogen, sulfate, methane, dissolved inorganic carbon, and sulfide with high-depth-resolution and 16S rRNA gene assays in sediment cores with low carbon reactivity in White Oak River (WOR) estuary, North Carolina, and those with high carbon reactivity in Cape Lookout Bight (CLB), North Carolina. We calculated the Gibbs energies of sulfate reduction and hydrogenotrophic methanogenesis. ResultsHydrogen concentrations were significantly higher in the sulfate reduction zone at CLB than WOR (mean: 0.716 vs. 0.437 nM H2) with highly contrasting hydrogen profiles. At WOR, hydrogen was extremely low and invariant (range: 0.41–0.52 nM H2) in the upper 15 cm. Deeper than 15 cm, hydrogen became more variable (range: 0.312–2.56 nM H2) and increased until methane production began at ~30 cm. At CLB, hydrogen was highly variable in the upper 15 cm (range: 0.08–2.18 nM H2). Ratios of inorganic carbon production to sulfate consumption show AOM drives sulfate reduction in WOR while degradation of organics drive sulfate reduction in CLB. DiscussionWe conclude more reactive organic matter increases hydrogen concentrations and their variability in anoxic marine sediments. In our AOM-dominated site, WOR, sulfate reducers have tight control on hydrogen via consortia with fermenters which leads to the lower observed variance due to interspecies hydrogen transfer. After sulfate depletion, hydrogen accumulates and becomes variable, supporting methanogenesis. This suggests that CLB’s more reactive organic matter allows fermentation to occur without tight metabolic coupling of fermenters to sulfate reducers, resulting in high and variable porewater hydrogen concentrations that prevent AOM from occurring through reverse hydrogenotrophic methanogenesis. 
    more » « less
  4. Abstract The Prairie Pothole Region (PPR) of North America contains millions of small depressional wetlands with some of the highest methane (CH4) fluxes ever reported in terrestrial ecosystems. In saturated soils, two conventional paradigms are (a) methanogenesis is the final step in the redox ladder, occurring only after more thermodynamically favorable electron acceptors (e.g., sulfate) are reduced, and (b) CH4is primarily produced by acetoclastic and hydrogenotrophic pathways. However, previous work in PPR wetlands observed co‐occurrence of sulfate‐reduction and methanogenesis and the presence of diverse methanogenic substrates (i.e., methanol, DMS). This study investigated how methylotrophic methanogenesis—in addition to acetoclastic and hydrogenotrophic methanogenesis—significantly contributes to CH4flux in surface sediments and thus allows for the co‐occurrence of competing redox processes in PPR sediments. We addressed this aim through field studies in two distinct high CH4emitting wetlands in the PPR complex, which coupled microbial community compositional and functional inferences with depth‐resolved electrochemistry measurements in surficial wetland sediments. This study revealed methylotrophic methanogens as the dominant group of methanogens in the presence of abundant organic sulfate esters, which are likely used for sulfate reduction. Resulting high sulfide concentrations likely caused sulfide toxicity in hydrogenotrophic and acetoclastic methanogens. Additionally, the use of non‐competitive substrates by many methylotrophic methanogens allows these metabolisms to bypass thermodynamic constraints and can explain co‐existence patterns of sulfate‐reduction and methanogenesis. This study demonstrates that the current models of methanogenesis in wetland ecosystems insufficiently represent carbon cycling in some of the highest CH4emitting environments. 
    more » « less
  5. As marine sediments are buried, microbial communities transition from sulfate-reduction to methane-production after sulfate is depleted. When this biogenic methane diffuses into the overlying sulfate-rich sediments, it forms a sulfate-methane transition zone (SMTZ) because sulfate reducers deplete hydrogen concentrations and make hydrogenotrophic methanogenesis exergonic in the reverse direction, a process called the anaerobic oxidation of methane (AOM). Microbial participation in these processes is often inferred from geochemistry, genes, and gene expression changes with sediment depth, using sedimentation rates to convert depth to time. Less is known about how natural sediments transition through these geochemical states transition in real-time. We examined 16S rRNA gene amplicon libraries and metatranscriptomes in microcosms of anoxic sediment from the White Oak River estuary, NC, with three destructively sampled replicates with methane added (586-day incubations) and three re-sampled un-amended replicates (895-day incubations). Sulfate dropped to a low value (∼0.3 mM) on similar days for both experiments (312 and 320 days, respectively), followed by a peak in hydrogen, intermittent increases in methane-cycling archaea starting on days 375 and 362 (mostly Methanolinea spp. and Methanosaeta spp., and Methanococcoides sp. ANME-3), and a methane peak 1 month later. However, methane δ 13 C values only show net methanogenesis 6 months after methane-cycling archaea increase and 4 months after the methane peak, when sulfate is consistently below 0.1 mM and hydrogen increases to a stable 0.61 ± 0.13 nM (days 553–586, n = 9). Sulfate-reducing bacteria (mostly Desulfatiglans spp. and Desulfosarcina sp. SEEP-SRB1) increase in relative abundance only during this period of net methane production, suggesting syntrophy with methanogens in the absence of sulfate. The transition from sulfate reduction to methane production in marine sediments occurs through a prolonged period of methane-cycling by methanogens at low sulfate concentrations, and steady growth of sulfate reducers along with methanogens after sulfate is depleted. 
    more » « less