skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Casual Planetarities: Choreographies, Resonance, and the Geologic Presence of People and Aquifers
Abstract Planetary awareness has become synonymous with awareness of large-scale temporal, geographic, and geologic events. Given the scalar multiplicities and instabilities of life on earth, concepts such as planetarity, the Anthropocene, and even the global have provided analytic reprieve. They name that which is difficult to objectify: the geographic and historical vastness of geological presence. But those concepts grow from knowledge habits inherited from imperial and Cold War logics and can presume the existence of an all-encompassing observer who can grasp the unity of the planet as such. This article explores alternative assumptions. It asks how other practices of the earth deal with planetary scales of sense-making. It conceptualizes those practices as forms of casual planetarity that, instead of drawing on preexisting scales such as the planet or the Anthropocene, produce senses of closeness and/or distance between everyday life and the geological implications of human presence. It follows the work of geologists in Costa Rica who rely on a 3D physical model to bring about scalar oscillations that connect human experiences with the vastness of underground worlds. This association is made possible by focusing on the movement of water as a hydro-geo-social choreography of everyday life. The article shows how the resonant power of the 3D model geologists use to enact these choreographies opens pathways for people to come to terms with their geological presence without having to see the planet as a whole or presume the capacity for total observation.  more » « less
Award ID(s):
2153960
PAR ID:
10490967
Author(s) / Creator(s):
Publisher / Repository:
Duke University Press
Date Published:
Journal Name:
Environmental Humanities
Volume:
15
Issue:
3
ISSN:
2201-1919
Page Range / eLocation ID:
266 to 283
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Great claims have been made about the benefits of dematerialization in a digital service economy. However, digitalization has historically increased environmental impacts at local and planetary scales, affecting labor markets, resource use, governance, and power relationships. Here we study the past, present, and future of digitalization through the lens of three interdependent elements of the Anthropocene: ( a) planetary boundaries and stability, ( b) equity within and between countries, and ( c) human agency and governance, mediated via ( i) increasing resource efficiency, ( ii) accelerating consumption and scale effects, ( iii) expanding political and economic control, and ( iv) deteriorating social cohesion. While direct environmental impacts matter, the indirect and systemic effects of digitalization are more profoundly reshaping the relationship between humans, technosphere and planet. We develop three scenarios: planetary instability, green but inhumane, and deliberate for the good. We conclude with identifying leverage points that shift human–digital–Earth interactions toward sustainability. 
    more » « less
  2. Earth’s polar and deep ocean systems and how they are affected by environmental changes provide analogs for understanding key processes acting in other ocean worlds, from physical and geological dynamics to chemical and biological processes. Subglacial lakes in Antarctica that are overlain by multiple kilometers of ice, as well as polar ice shelves underlain by subsurface areas of the ocean, are key sites for studying processes operating at ice-water and rock-ocean interfaces on Earth and on icy worlds. Hydrothermal vents at the seafloor release chemicals that provide energy for life and are also key areas for cross-linked Earth and planetary studies relevant to deep oceans dynamics. The presence of chemosynthetic microbes that are then consumed by multicellular life forms provide an analog for examining the potential existence of life in some subregions within ocean worlds. Here, we discuss the various Earth system processes that may have analogs on other ocean worlds and the benefits of collaborative Earth and planetary science investigations. 
    more » « less
  3. Abstract The search for life in the Universe is a fundamental problem of astrobiology and modern science. The current progress in the detection of terrestrial-type exoplanets has opened a new avenue in the characterization of exoplanetary atmospheres and in the search for biosignatures of life with the upcoming ground-based and space missions. To specify the conditions favourable for the origin, development and sustainment of life as we know it in other worlds, we need to understand the nature of global (astrospheric), and local (atmospheric and surface) environments of exoplanets in the habitable zones (HZs) around G-K-M dwarf stars including our young Sun. Global environment is formed by propagated disturbances from the planet-hosting stars in the form of stellar flares, coronal mass ejections, energetic particles and winds collectively known as astrospheric space weather. Its characterization will help in understanding how an exoplanetary ecosystem interacts with its host star, as well as in the specification of the physical, chemical and biochemical conditions that can create favourable and/or detrimental conditions for planetary climate and habitability along with evolution of planetary internal dynamics over geological timescales. A key linkage of (astro)physical, chemical and geological processes can only be understood in the framework of interdisciplinary studies with the incorporation of progress in heliophysics, astrophysics, planetary and Earth sciences. The assessment of the impacts of host stars on the climate and habitability of terrestrial (exo)planets will significantly expand the current definition of the HZ to the biogenic zone and provide new observational strategies for searching for signatures of life. The major goal of this paper is to describe and discuss the current status and recent progress in this interdisciplinary field in light of presentations and discussions during the NASA Nexus for Exoplanetary System Science funded workshop ‘Exoplanetary Space Weather, Climate and Habitability’ and to provide a new roadmap for the future development of the emerging field of exoplanetary science and astrobiology. 
    more » « less
  4. Despite being one of the largest microbial ecosystems on Earth, many basic open questions remain about how life exists and thrives in the deep subsurface biosphere. Much of this ambiguity is due to the fact that it is exceedingly difficult and often prohibitively expensive to directly sample the deep subsurface, requiring elaborate drilling programs or access to deep mines. We propose a sampling approach which involves collection of a large suite of geological, geochemical, and biological data from numerous deeply-sourced seeps—including lower temperature sites—over large spatial scales. This enables research into interactions between the geosphere and the biosphere, expanding the classical local approach to regional or even planetary scales. Understanding the interplay between geology, geochemistry and biology on such scales is essential for building subsurface ecosystem models and extrapolating the ecological and biogeochemical roles of subsurface microbes beyond single site interpretations. This approach has been used successfully across the Central and South American Convergent Margins, and can be applied more broadly to other types of geological regions (i.e., rifting, intraplate volcanic, and hydrothermal settings). Working across geological spatial scales inherently encompasses broad temporal scales (e.g., millions of years of volatile cycling across a convergent margin), providing access to a framework for interpreting evolution and ecosystem functions through deep time and space. We propose that tectonic interactions are fundamental to maintaining planetary habitability through feedbacks that stabilize the ecosphere, and deep biosphere studies are fundamental to understanding geo-bio feedbacks on these processes on a global scale. 
    more » « less
  5. Abstract This work is a direct continuation of McKinney et al., who attempted to create a planet with Earth-like temperatures and physical properties but with precipitation and circulation patterns that were Titan-like. McKinney et al. attempted to do so by changing only three basic planetary parameters: the ratio of dry land to ocean on the surface, the rotation period, and the volatility of the condensable. Each of these parameters is varied from an Earth-like value to a Titan-like one to analyze the climate transition between these two planetary archetypes. In this work, we expand on McKinney et al. by including a seasonal cycle and increasing the number of diagnostic criteria for determining Titan-like dynamics. The simulations use Earth-like obliquity and an Earth-like solar constant. We find that the presence of a dry land strip extending to at least 55°N/S is most effective at creating Titan-like climatic conditions on an otherwise Earth-like planet, such as high-latitude summer precipitation maxima and a low-humidity equator. In contrast, slow rotation and high atmospheric vapor abundance have minimal climatic impacts despite being characteristic features of Titan. Our experiments show that it is not difficult to produce distinctly Titan-like features in an Earth-like GCM with minimal changes to its fundamental parameters. This suggests that Earth-like planets could have a large range of global climate states throughout their history just through changes in topography. Similarly, Titan may have experienced more Earth-like climate states in periods where its tropics were wetter. 
    more » « less