Regenerative medicine and tissue engineering strategies have made remarkable progress in remodeling, replacing, and regenerating damaged cardiovascular tissues. The design of three-dimensional (3D) scaffolds with appropriate biochemical and mechanical characteristics is critical for engineering tissue-engineered replacements. The extracellular matrix (ECM) is a dynamic scaffolding structure characterized by tissue-specific biochemical, biophysical, and mechanical properties that modulates cellular behavior and activates highly regulated signaling pathways. In light of technological advancements, biomaterial-based scaffolds have been developed that better mimic physiological ECM properties, provide signaling cues that modulate cellular behavior, and form functional tissues and organs. In this review, we summarize the in vitro, pre-clinical, and clinical research models that have been employed in the design of ECM-based biomaterials for cardiovascular regenerative medicine. We highlight the research advancements in the incorporation of ECM components into biomaterial-based scaffolds, the engineering of increasingly complex structures using biofabrication and spatial patterning techniques, the regulation of ECMs on vascular differentiation and function, and the translation of ECM-based scaffolds for vascular graft applications. Finally, we discuss the challenges, future perspectives, and directions in the design of next-generation ECM-based biomaterials for cardiovascular tissue engineering and clinical translation.
more »
« less
Interfacial Tissue Regeneration with Bone
Abstract Purpose of ReviewInterfacial tissue exists throughout the body at cartilage-to-bone (osteochondral interface) and tendon-to-bone (enthesis) interfaces. Healing of interfacial tissues is a current challenge in regenerative approaches because the interface plays a critical role in stabilizing and distributing the mechanical stress between soft tissues (e.g., cartilage and tendon) and bone. The purpose of this review is to identify new directions in the field of interfacial tissue development and physiology that can guide future regenerative strategies for improving post-injury healing. Recent FindingsCues from interfacial tissue development may guide regeneration including biological cues such as cell phenotype and growth factor signaling; structural cues such as extracellular matrix (ECM) deposition, ECM, and cell alignment; and mechanical cues such as compression, tension, shear, and the stiffness of the cellular microenvironment. SummaryIn this review, we explore new discoveries in the field of interfacial biology related to ECM remodeling, cellular metabolism, and fate. Based on emergent findings across multiple disciplines, we lay out a framework for future innovations in the design of engineered strategies for interface regeneration. Many of the key mechanisms essential for interfacial tissue development and adaptation have high potential for improving outcomes in the clinic.
more »
« less
- Award ID(s):
- 1944448
- PAR ID:
- 10491031
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Current Osteoporosis Reports
- Volume:
- 22
- Issue:
- 2
- ISSN:
- 1544-1873
- Format(s):
- Medium: X Size: p. 290-298
- Size(s):
- p. 290-298
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Toner, Mehmet; Yarmush, Martin L (Ed.)Hyaluronan (HA) plays well-recognized mechanical and biological roles in articular cartilage and synovial fluid, where it contributes to tissue structure and lubrication. An understanding of how HA contributes to the structure of other musculoskeletal tissues, including muscle, bone, tendon, and intervertebral discs, is growing. In addition, the use of HA-based therapies to restore damaged tissue is becoming more prevalent. Nevertheless, the relationship between biomechanical stimuli and HA synthesis, degradation, and signaling in musculoskeletal tissues remains understudied, limiting the utility of HA in regenerative medicine. In this review, we discuss the various roles and significance of endogenous HA in musculoskeletal tissues. We use what is known and unknown to motivate new lines of inquiry into HA biology within musculoskeletal tissues and in the mechanobiology governing HA metabolism by suggesting questions that remain regarding the relationship and interaction between biological and mechanical roles of HA in musculoskeletal health and disease.more » « less
-
IntroductionFollowing early cell specification and tenocyte differentiation at the sites of future tendons, very little is known about how tendon maturation into robust load-bearing tissue is regulated. Between embryonic day (E)16 and E18 in the chick, there is a rapid change in mechanical properties which is dependent on normal embryo movement. However, the tissue, cellular and molecular changes that contribute to this transition are not well defined. MethodsHere we profiled aspects of late tendon development (collagen fibre alignment, cell organisation and Yap pathway activity), describing changes that coincide with tissue maturation. We compared effects of rigid (constant static loading) and flaccid (no loading) immobilisation to gain insight into developmental steps influenced by mechanical cues. ResultsWe show that YAP signalling is active and responsive to movement in late tendon. Collagen fibre alignment increased over time and under static loading. Cells organise into end-to-end stacked columns with increased distance between adjacent columns, where collagen fibres are deposited; this organisation was lost following both types of immobilisation. DiscussionWe conclude that specific aspects of tendon maturation require controlled levels of dynamic muscle-generated stimulation. Such a developmental approach to understanding how tendons are constructed will inform future work to engineer improved tensile load-bearing tissues.more » « less
-
Abstract The convergence of nanotechnology and bioprinting is redefining the landscape of tissue engineering, with nanocomposite gelatin methacryloyl (GelMA) bioinks emerging as a transformative platform for the biofabrication of multifunctional tissue‐specific constructs. GelMA, a photocrosslinkable hydrogel, has rapidly gained attention due to its intrinsic bioactivity, tunable mechanical properties, and compatibility with living cells. However, despite its wide applicability regenerating muscle, cartilage, bone, vascular, cardiac, and neural tissues, native GelMA suffers from limited mechanical strength and insufficient biofunctionality to recapitulate the complexity of specialized tissues. To overcome these shortcomings, recent strategies have focused on the incorporation of nanomaterials into GelMA matrices, ranging from inorganic and carbon‐based to metallic, polymeric, and lipidic nanomaterials. These nanocomposite bioprinted scaffolds impart critical enhancements, including improved mechanical robustness, electrical conductivity, stimuli‐responsiveness, and bioactivity, while also enabling advanced functionalities such as controlled drug release and real‐time responsiveness to the cellular microenvironment. This review examines the bioprinting parameters, material synergies, and design strategies governing the performance of nanocomposite GelMA bioinks. By integrating the tunability of photocrosslinkable bioinks with the multifunctionality of nanomaterials, nanocomposite GelMA bioinks represent a next‐generation platform capable of addressing the complex demands of tissue repair and regeneration.more » « less
-
Abstract The ability to direct cell behavior has been central to the success of numerous therapeutics to regenerate tissue or facilitate device integration. Biomaterial scientists are challenged to understand and modulate the interactions of biomaterials with biological systems in order to achieve effective tissue repair. One key area of research investigates the use of extracellular matrix‐derived ligands to target specific integrin interactions and induce cellular responses, such as increased cell migration, proliferation, and differentiation of mesenchymal stem cells. These integrin‐targeting proteins and peptides have been implemented in a variety of different polymeric scaffolds and devices to enhance tissue regeneration and integration. This review first presents an overview of integrin‐mediated cellular processes that have been identified in angiogenesis, wound healing, and bone regeneration. Then, research utilizing biomaterials are highlighted with integrin‐targeting motifs as a means to direct these cellular processes to enhance tissue regeneration. In addition to providing improved materials for tissue repair and device integration, these innovative biomaterials provide new tools to probe the complex processes of tissue remodeling in order to enhance the rational design of biomaterial scaffolds and guide tissue regeneration strategies.more » « less
An official website of the United States government
