skip to main content


Title: Poly(ethylene terephthalate)‐polyethylene block copolymer architecture effects on interfacial adhesion and blend compatibilization
Abstract

In this study, poly(ethylene terephthalate)‐block‐polyethylene (PET‐PE) multiblock copolymers (MBCPs) with block molar masses of ~4 or 7 kg mol−1and either alternating or random block sequencing, and a PE‐PET‐PE triblock copolymer (TBCP) of comparable total molar mass, were synthesized. To explore the effect of molecular architecture on compatibilization, both MBCPs and TBCPs were blended into 80/20 wt/wt mixtures of PET/linear low‐density PE (LLDPE). Compatibilization was remarkably efficient for all MBCP types, with the addition of 0.2 wt% yielding blends nearly as tough as PET homopolymer. Addition of MBCP also significantly decreases LLDPE dispersed phase sizes compared to PET/LLDPE neat blends, as much as 80% in as‐mixed blends and by a factor of 10 in post‐mixing thermally annealed samples. Conversely, the TBCP was less efficient at decreasing domain sizes of the blends and improving the mechanical properties, requiring loadings of 1 wt% to produce comparably tough blends. Peel tests of PET/BCP/LLDPE trilayer films showed that both MBCPs and TBCP all improve interfacial strength over a PET‐PE bilayer film by two orders of magnitude; however, when the BCPs were preloaded into LLDPE, only the MBCP containing films showed strong adhesion highlighting their potential utility as adhesive agents in multilayer films.

 
more » « less
Award ID(s):
1901635
NSF-PAR ID:
10491059
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Polymer Science
Volume:
62
Issue:
4
ISSN:
2642-4150
Format(s):
Medium: X Size: p. 753-765
Size(s):
["p. 753-765"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Polymer blend compatibilization is an attractive solution for mechanical recycling of mixed plastic waste because it can result in tough blends. In this work, hydroxy-telechelic polyethylene (HOPEOH) reactive additives were used to compatibilize blends of polyethylene terephthalate (PET) and linear low-density polyethylene (LLDPE). HOPEOH additives were synthesized with molar masses of 1–20 kg/mol by ring-opening metathesis polymerization of cyclooctene followed by catalytic hydrogenation. Melt-compounded blends containing 0.5 wt % HOPEOH displayed reduced dispersed phase LLDPE particle sizes with ductilities comparable to virgin PET and almost seven times greater than neat blends, regardless of additive molar mass. In contrast, analogous blends containing monohydroxy PE additives of comparable molar masses did not result in compatibilization even at 2 wt % loading. The results strongly suggest that both hydroxy ends of HOPEOH undergo transesterification reactions during melt mixing with PET to form predominantly PET–PE–PET triblock copolymers at the interface of the dispersed and matrix phases. We hypothesize that the triblock copolymer compatibilizers localized at the interface form trapped entanglements of the PE midblocks with nearby LLDPE homopolymer chains by a hook-and-clasp mechanism. Finally, HOPEOH compounds were able to efficiently compatibilize blends derived solely from postconsumer PET and PE bottles and film, suggesting their industrial applicability. 
    more » « less
  2. Abstract

    Using molten‐salt synthetic techniques, NaNbO3(Space groupPbcm; No. 57) was prepared in high purity at a reaction time of 12 hours and a temperature of 900°C. All NaNbO3products were prepared from stoichiometric ratios of Nb2O5and Na2CO3together with the addition of a salt flux introduced at a 10:1 molar ratio of salt to NaNbO3, that is, using the Na2SO4, NaF, NaCl, and NaBr salts. A solid‐state synthesis was performed in the absence of a molten salt to serve as a control. The reaction products were all found to be phase pure through powder X‐ray diffraction, for example, with refined lattice constants ofa = 5.512(5) Å,b = 5.567(3) Å, andc = 15.516(8) Å from the Na2SO4salt reaction. The products were characterized using UV‐Vis diffuse reflectance spectroscopy to have a bandgap size of ~3.5 eV. The particles sizes were analyzed by scanning electron microscopy (SEM) and found to be dependent upon the flux type used, from ~<1 μm to >10 μm in length, with overall surface areas that could be varied from 0.66 m2/g (for NaF) to 1.55 m2/g (for NaBr). Cubic‐shaped particle morphologies were observed for the metal halide salts with the set of exposed (100)/(010)/(001) crystal facets, while a truncated octahedral morphology formed in the sodium sulfate salt reaction with predominantly the set of (110)/(101)/(011) crystal facets. The products were found to be photocatalytically active for hydrogen production under UV‐Vis irradiation, with the aid of a 1 wt% Pt surface cocatalyst. The platinized NaNbO3particles were suspended in an aqueous 20% methanol solution and irradiated by UV‐Vis light (λ > 230 nm). After 6 hours of irradiation, the average total hydrogen production varied with the particle morphologies and sizes, with 753 µmol for Na2SO4, 334 µmol for NaF, 290 µmol for NaCl, 81 µmol for NaBr, and 249 µmol for the solid‐state synthesized NaNbO3. These trends show a clear relationship to particle sizes, with smaller particles showing higher photocatalytic activity in the order of NaF > NaCl > NaBr. Furthermore, the particle morphologies obtained from the Na2SO4flux showed even higher photocatalytic activity, though having a relatively similar overall surface area, owing to the higher activity of the (110) crystal facets. The apparent quantum yield (100 mW/cm2,λ = 230 to 350 nm, pH = 7) was measured to be 3.7% for NaNbO3prepared using the NaF flux, but this was doubled to 6.8% when prepared using the Na2SO4flux. Thus, these results demonstrate the powerful utility of flux synthetic techniques to control particle sizes and to expose higher‐activity crystal facets to boost their photocatalytic activities for molecular hydrogen production.

     
    more » « less
  3. Abstract

    Polymer compatibilization plays a critical role in achieving polymer blends with favorable mechanical properties and enabling efficient recycling of mixed plastic wastes. Nonetheless, traditional compatibilization methods often require tailored designs based on the specific chemical compositions of the blends. In this study, we propose a new approach for compatibilizing polymer blends using a dynamically crosslinked polymer network, known as vitrimers. By adding a relatively small amount (1–5 w/w%) of a vitrimer made of siloxane‐crosslinked high‐density polyethylene (HDPE), we successfully compatibilized unmodified HDPE and isotactic polypropylene (iPP). The vitrimer‐compatibilized blend exhibited enhanced elongation at break (120 %) and smaller iPP domain sizes (0.4 μm) compared to the control blend (22 % elongation at break, 0.9 μm iPP droplet size). Moreover, the vitrimer‐compatibilized blend showed significantly improved microphase stability during annealing at 180 °C. This straightforward method shows promise for applications across various polymer blend systems.

     
    more » « less
  4. Abstract

    Polymer compatibilization plays a critical role in achieving polymer blends with favorable mechanical properties and enabling efficient recycling of mixed plastic wastes. Nonetheless, traditional compatibilization methods often require tailored designs based on the specific chemical compositions of the blends. In this study, we propose a new approach for compatibilizing polymer blends using a dynamically crosslinked polymer network, known as vitrimers. By adding a relatively small amount (1–5 w/w%) of a vitrimer made of siloxane‐crosslinked high‐density polyethylene (HDPE), we successfully compatibilized unmodified HDPE and isotactic polypropylene (iPP). The vitrimer‐compatibilized blend exhibited enhanced elongation at break (120 %) and smaller iPP domain sizes (0.4 μm) compared to the control blend (22 % elongation at break, 0.9 μm iPP droplet size). Moreover, the vitrimer‐compatibilized blend showed significantly improved microphase stability during annealing at 180 °C. This straightforward method shows promise for applications across various polymer blend systems.

     
    more » « less
  5. Herein, we present the direct modification of glucose, an abundant and inexpensive sugar molecule, to produce new sustainable and functional polymers. Glucose-6-acrylate-1,2,3,4-tetraacetate (GATA) has been synthesized and shown to provide a useful glassy component for developing an innovative family of elastomeric and adhesive materials. A series of diblock and triblock copolymers of GATA and n -butyl acrylate (n-BA) were created via Reversible Addition–Fragmentation Chain Transfer (RAFT) polymerization. Initially, poly(GATA)- b -poly(n-BA) copolymers were prepared using 4-cyano-4-[(ethylsulfanylthiocarbonyl)sulfanyl] pentanoic acid (CEP) as a chain transfer agent (CTA). These diblock copolymers demonstrated decomposition temperatures of 275 °C or greater and two glass transition temperatures ( T g ) around −45 °C and 100 °C corresponding to the PnBA and PGATA domains, respectively, as measured by differential scanning calorimetry (DSC). Triblock copolymers of GATA and n-BA, with moderate dispersities ( Đ = 1.15–1.29), were successfully synthesized when S , S -dibenzyl trithiocarbonate (DTC) was employed as the CTA. Poly(GATA)- b -poly(nBA)- b -poly(GATA) copolymers with 14–58 wt% GATA were prepared and demonstrated excellent thermomechanical properties ( T d ≥ 279 °C). Two well-separated glass transitions near the values for homopolymers of n-BA and GATA (∼−45 °C and ∼100 °C, respectively) were measured by DSC. The triblock with 14% GATA exhibited peel adhesion of 2.31 N cm −1 (when mixed with 30 wt% tackifier) that is superior to many commercial pressure sensitive adhesives (PSAs). Use of 3,5-bis(2-dodecylthiocarbonothioylthio-1oxopropoxy)benzoic acid (BTCBA) as the CTA provided a more efficient route to copolymerize GATA and n-BA. Using BTCBA, poly(GATA)- b -poly(nBA)- b -poly(GATA) triblock copolymers containing 12–25 wt% GATA, with very narrow molar mass distributions ( Đ ≤ 1.08), were prepared. The latter series of triblock copolymers showed excellent thermal stability with T d ≥ 275 °C. Only the T g for the PnBA block was observed by DSC (∼−45 °C), however, phase-separation was confirmed by small-angle X-ray scattering (SAXS) for all of these triblock copolymers. The mechanical behavior of the polymers was investigated by tensile experiments and the triblock with 25% GATA content demonstrated moderate elastomeric properties, 573 kPa stress at break and 171% elongation. This study introduces a new family of glucose-based ABA-type copolymers and demonstrates functionality of a glucose-based feedstock for developing green polymeric materials. 
    more » « less