skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The dimensionality of infection networks among viruses infecting microbial eukaryotes and bacteria
Abstract Diverse viruses and their hosts are interconnected through complex networks of infection, which are thought to influence ecological and evolutionary processes, but the principles underlying infection network structure are not well understood. Here we focus on network dimensionality and how it varies across 37 networks of viruses infecting eukaryotic phytoplankton and bacteria. We find that dimensionality is often strikingly low, with most networks being one‐ or two‐dimensional, although dimensionality increases with network richness, suggesting that the true dimensionality of natural systems is higher. Low‐dimensional networks generally exhibit a mixture of host partitioning among viruses and nestededness of host ranges. Networks of bacteria‐infecting and eukaryote‐infecting viruses possess comparable distributions of dimensionality and prevalence of nestedness, indicating that fundamentals of network structure are similar among domains of life and different viral lineages. The relative simplicity of many infection networks suggests that coevolutionary dynamics are often driven by a modest number of underlying mechanisms.  more » « less
Award ID(s):
2129697
PAR ID:
10491176
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecology Letters
Volume:
27
Issue:
2
ISSN:
1461-023X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Temperate phages are viruses of bacteria that can establish two types of infection: a lysogenic infection in which the virus replicates with the host cell without producing virions, and a lytic infection where the host cell is eventually destroyed, and new virions are released. While both lytic and lysogenic infections are routinely observed in the environment, the ecological and evolutionary processes regulating these viral dynamics are still not well understood, especially for uncultivated virus-host pairs. Here, we characterized the long-term dynamics of uncultivated viruses infecting green sulfur bacteria (GSB) in a model freshwater lake (Trout Bog Lake, TBL). As no GSB virus has been formally described yet, we first used two complementary approaches to identify new GSB viruses from TBL; one in vitro based on flow cytometry cell sorting, the other in silico based on CRISPR spacer sequences. We then took advantage of existing TBL metagenomes covering the 2005–2018 period to examine the interactions between GSB and their viruses across years and seasons. From our data, GSB populations in TBL were constantly associated with at least 2-8 viruses each, including both lytic and temperate phages. The dominant GSB population in particular was consistently associated with two prophages with a nearly 100% infection rate for >10 years. We illustrate with a theoretical model that such an interaction can be stable given a low, but persistent, level of prophage induction in low-diversity host populations. Overall, our data suggest that lytic and lysogenic viruses can readily co-infect the same host population, and that host strain-level diversity might be an important factor controlling virus-host dynamics including lytic/lysogeny switch. 
    more » « less
  2. Abstract Viruses infecting aquatic microbes vary immensely in size, but the ecological consequences of virus size are poorly understood. Here we used a unique suite of diverse phytoplankton strains and their viruses, all isolated from waters around Hawai'i, to assess whether virus size affects the suppression of host populations. We found that small viruses of diverse genome type (3–24 kb genome size, 23–70 nm capsid diameter) have very similar effects on host populations, suppressing hosts less strongly and for a shorter period of time compared to large double‐stranded DNA viruses (214–1380 kb, 112–386 nm). Suppressive effects of larger viruses were more heterogeneous, but most isolates reduced host populations by many orders of magnitude, without recovery over the ~ 25‐d experiments. Our results suggest that disparate lineages of viruses may have ecological consequences that are predictable in part based on size, and that ecosystem impacts of viral infection may vary with the size structure of the viral community. 
    more » « less
  3. Abstract Viruses span an impressive size range, with genome length varying a thousandfold and virion volume nearly a millionfold. For cellular organisms the scaling of traits with size is a pervasive influence on ecological processes, but whether size plays a central role in viral ecology is unknown. Here, we focus on viruses of aquatic unicellular organisms, which exhibit the greatest known range of virus size. We outline hypotheses within a quantitative framework, and analyse data where available, to consider how size affects the primary components of viral fitness. We argue that larger viruses have fewer offspring per infection and slower contact rates with host cells, but a larger genome tends to increase infection efficiency, broaden host range, and potentially increase attachment success and decrease decay rate. These countervailing selective pressures may explain why a breadth of sizes exist and even coexist when infecting the same host populations. Oligotrophic ecosystems may be enriched in “giant” viruses, because environments with resource‐limited phagotrophs at low concentrations may select for broader host range, better control of host metabolism, lower decay rate and a physical size that mimics bacterial prey. Finally, we describe where further research is needed to understand the ecology and evolution of viral size diversity. 
    more » « less
  4. Vives, Martha (Ed.)
    Phages, which are viruses that infect bacteria, are important components of all microbial systems, in which they drive the turnover of organic matter by lysing host cells, facilitate horizontal gene transfer (HGT), and coevolve with their bacterial hosts. Bacteria resist phage infection, which is often costly or lethal, through a diversity of mechanisms. 
    more » « less
  5. Viruses of eukaryotic algae have become an important research focus due to their role(s) in nutrient cycling and top-down control of algal blooms. Omics-based studies have identified a boon of genomic and transcriptional potential among theNucleocytoviricota, a phylum of large dsDNA viruses which have been shown to infect algal and non-algal eukaryotes. However, little is still understood regarding the infection cycle of these viruses, particularly in how they take over a metabolically active host and convert it into a virocell state. Of particular interest are the roles light and the diel cycle in virocell development. Yet despite such a large proportion ofNucleocytoviricotainfecting phototrophs, little work has been done to tie infection dynamics to the presence, and absence, of light. Here, we examine the role of the diel cycle on the physiological and transcriptional state of the pelagophyteAureococcus anophagefferenswhile undergoing infection byKratosvirus quantuckensestrain AaV. Our observations demonstrate how infection by the virus interrupts the diel growth and division of this cell strain, and that infection further complicates the system by enhancing export of cell biomass. 
    more » « less