For a polygon P with holes in the plane, we denote by ρ(P ) the ratio between the geodesic and the Euclidean diameters of P . It is shown that over all convex polygons with h convex holes, the supremum of ρ(P ) is between Ω(h1/3) and O(h1/2). The upper bound improves to O(1 + min{h3/4∆, h1/2∆1/2}) if every hole has diameter at most ∆ ·diam2(P ); and to O(1) if every hole is a fat convex polygon. Furthermore, we show that the function g(h) = supP ρ(P ) over convex polygons with h convex holes has the same growth rate as an analogous quantity over geometric triangulations with h vertices when h → ∞
more »
« less
Investigation of the Critical Currents in Thin-Film MoGe Devices
We report on flux-flow properties of 50 nmthick thinfilm amorphous MoGe bridges of different sizes with and without patterned sub-micron holes with different diameters and spacings. Characterization of the devices was carried out in liquid He at 4.2 K in a magnetic field, H, applied perpendicular to the device plane. Two critical currents, Ic1 and Ic2, were studied. The current Ic1 is identified as the onset of a low-resistance state, whereas Ic2 is the current at which the device switches to a high-resistance state, and the corresponding dependences Ic1(H) and Ic2(H) were determined. In the absence of the holes, Ic1 decreases monotonically with H, whereas Ic2(H) manifests lobes resembling those in the Fraunhofer-like pattern characteristic of Josephson junctions. This behavior may be due to formation of an ordered vortex lattice in some current and field ranges. Introducing the hole-line arrays modifies both Ic1(H) and Ic2(H) in a way that is most complicated for larger hole diameters.
more »
« less
- Award ID(s):
- 1905742
- PAR ID:
- 10491290
- Publisher / Repository:
- Institute for Electrical and Electronic Engineers
- Date Published:
- Journal Name:
- IEEE Transactions on Applied Superconductivity
- Volume:
- 34
- Issue:
- 3
- ISSN:
- 1051-8223
- Page Range / eLocation ID:
- 1 to 4
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
For a polygon P with holes in the plane, we denote by ϱ(P) the ratio between the geodesic and the Euclidean diameters of P. It is shown that over all convex polygons with h convex holes, the supremum of ϱ(P) is between Ω(h1/3) and O(h1/2) . The upper bound improves to O(1+min{h3/4Δ,h1/2Δ1/2}) if every hole has diameter at most Δ⋅diam2(P) ; and to O(1) if every hole is a fat convex polygon. Furthermore, we show that the function g(h)=supPϱ(P) over convex polygons with h convex holes has the same growth rate as an analogous quantity over geometric triangulations with h vertices when h→∞ .more » « less
-
The energy and beam current dependence of Ga+focused ion beam milling damage on the sidewall of vertical rectifiers fabricated on n-type Ga2O3was investigated with 5–30 kV ions and beam currents from 1.3–20 nA. The sidewall damage was introduced by etching a mesa along one edge of existing Ga2O3rectifiers. We employed on-state resistance, forward and reverse leakage current, Schottky barrier height, and diode ideality factor from the vertical rectifiers as potential measures of the extent of the ion-induced sidewall damage. Rectifiers of different diameters were exposed to the ion beams and the “zero-area” parameters extracted by extrapolating to zero area and normalizing for milling depth. Forward currents degraded with exposure to any of our beam conductions, while reverse current was unaffected. On-state resistance was found to be most sensitive of the device parameters to Ga+beam energy and current. Beam current was the most important parameter in creating sidewall damage. Use of subsequent lower beam energies and currents after an initial 30 kV mill sequence was able to reduce residual damage effects but not to the point of initial lower beam current exposures.more » « less
-
Intrinsic residual stresses in woven composites result from the coefficient of thermal expansion mismatch between the fibers and the matrix. Extrinsic residual stresses result from large scale thermal gradients during curing and cooling. Intrinsic residual stresses in 3D woven composites are sometimes severe enough to cause micro-cracking in the matrix. They are also expected to impact the fatigue resistance and the impact resistance. To the best of our knowledge, there have been no spatially resolved measurements of the intrinsic residual stress field as a function of position in the repeating weave pattern. We used digital image correlation (DIC) and electronic speckle pattern interferometry (ESPI) to measure the surface displacement field resulting from drilling a 1 mm diameter hole at four selected locations in two different 3D woven composite architectures that represent low and high through-the-thickness constraint. The two methods are used because the displacements sometimes on the lower end of the resolution for the DIC method and the displacement gradients are sometimes too steep to resolve the fringes for the ESPI method. Finite element models constructed with realistic fiber geometry using Dynamic Fabric Mechanic Analyzer software were utilized to estimate the residual stress field from cooling from the curing temperature. Holes were manually inserted by deactivating the elements in the hole region and the resultant displacement fields were compared to the measurements. In general, the measured displacement fields were lower in magnitude than the model predictions. In some cases, the sign of the predicted displacement field is opposite to the observed field which could be attributed to differences between the actual hole location and the hole in the model.more » « less
-
null (Ed.)Emerging infrared photodetectors have reported a high level of gain using trap-assisted photomultiplication mechanisms enabling significant enhancements in their sensitivity. This work investigates a series of interfacial materials in order to understand how charge blocking layers facilitate trap-assisted photomultiplication in organic shortwave infrared detectors. The hole blocking layers induce accumulation of photogenerated holes at the interface, which in turn lowers the electron injection barrier and enables photomultiplication. In addition to examining photoresponse characteristics, the device dark current is analyzed by fitting to a charge injection model to quantify injection barriers. This demonstrates that the electric field induced barrier lowering effect plateaus with increasing applied bias. Among the interfaces studied, the best detectivity is observed using the hole blocking layer bathophenanthroline (Bphen), which reduces the probability of recombination and extends the lifetime of trapped holes to increase photomultiplication. This leads to a responsivity of 5.6 A W −1 (equivalent external quantum efficiency = 660% at 1050 nm) and detectivity of 10 9 Jones with broadband operation from 600 nm to 1400 nm.more » « less
An official website of the United States government

