skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Certifiably-correct Control Policies for Safe Learning and Adaptation in Assistive Robotics
Guaranteeing safety in human-centric applications is critical in robot learning as the learned policies may demonstrate unsafe behaviors in formerly unseen scenarios. We present a framework to locally repair an erroneous policy network to satisfy a set of formal safety constraints using Mixed Integer Quadratic Programming (MIQP). Our MIQP formulation explicitly imposes the safety constraints to the learned policy while minimizing the original loss function. The policy network is then verified to be locally safe. We demonstrate the application of our framework to derive safe policies for a robotic lower-leg prosthesis.  more » « less
Award ID(s):
1932068
PAR ID:
10491306
Author(s) / Creator(s):
Publisher / Repository:
JMLR NeuRIPS
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Safe reinforcement learning (RL) has been recently employed to train a control policy that maximizes the task reward while satisfying safety constraints in a simulated secure cyber-physical environment. However, the vulnerability of safe RL has been barely studied in an adversarial setting. We argue that understanding the safety vulnerability of learned control policies is essential to achieve true safety in the physical world. To fill this research gap, we first formally define the adversarial safe RL problem and show that the optimal policies are vulnerable under observation perturbations. Then, we propose novel safety violation attacks that induce unsafe behaviors by adversarial models trained using reversed safety constraints. Finally, both theoretically and experimentally, we show that our method is more effective in violating safety than existing adversarial RL works which just seek to decrease the task reward, instead of violating safety constraints. 
    more » « less
  2. Assistive robotic devices are a particularly promising field of application for neural networks (NN) due to the need for personalization and hard-to-model human-machine interaction dynamics. However, NN based estimators and controllers may produce potentially unsafe outputs over previously unseen data points. In this paper, we introduce an algorithm for updating NN control policies to satisfy a given set of formal safety constraints, while also optimizing the original loss function. Given a set of mixed-integer linear constraints, we define the NN repair problem as a Mixed Integer Quadratic Program (MIQP). In extensive experiments, we demonstrate the efficacy of our repair method in generating safe policies for a lower-leg prosthesis. 
    more » « less
  3. Reinforcement learning (RL) in low-data and risk-sensitive domains requires performant and flexible deployment policies that can readily incorporate constraints during deployment. One such class of policies are the semi-parametric H-step lookahead policies, which select actions using trajectory optimization over a dynamics model for a fixed horizon with a terminal value function. In this work, we investigate a novel instantiation of H-step lookahead with a learned model and a terminal value function learned by a model-free off-policy algorithm, named Learning Off-Policy with Online Planning (LOOP). We provide a theoretical analysis of this method, suggesting a tradeoff between model errors and value function errors and empirically demonstrate this tradeoff to be beneficial in deep reinforcement learning. Furthermore, we identify the "Actor Divergence" issue in this framework and propose Actor Regularized Control (ARC), a modified trajectory optimization procedure. We evaluate our method on a set of robotic tasks for Offline and Online RL and demonstrate improved performance. We also show the flexibility of LOOP to incorporate safety constraints during deployment with a set of navigation environments. We demonstrate that LOOP is a desirable framework for robotics applications based on its strong performance in various important RL settings. 
    more » « less
  4. Cyber-Physical Systems(CPS) are the integration of sensing, control, computation, and networking with physical components and infrastructure connected by the internet. The autonomy and reliability are enhanced by the recent development of safe reinforcement learning (safe RL). However, the vulnerability of safe RL to adversarial conditions has received minimal exploration. In order to truly ensure safety in physical world applications, it is crucial to understand and address these potential safety weaknesses in learned control policies. In this work, we demonstrate a novel attack to violate safety that induces unsafe behaviors by adversarial models trained using reversed safety constraints. The experiment results show that the proposed method is more effective than existing works. 
    more » « less
  5. null (Ed.)
    We present Revel, a partially neural reinforcement learning (RL) framework for provably safe exploration in continuous state and action spaces. A key challenge for provably safe deep RL is that repeatedly verifying neural networks within a learning loop is computationally infeasible. We address this challenge using two policy classes: a general, neurosymbolic class with approximate gradients and a more restricted class of symbolic policies that allows efficient verification. Our learning algorithm is a mirror descent over policies: in each iteration, it safely lifts a symbolic policy into the neurosymbolic space, performs safe gradient updates to the resulting policy, and projects the updated policy into the safe symbolic subset, all without requiring explicit verification of neural networks. Our empirical results show that Revel enforces safe exploration in many scenarios in which Constrained Policy Optimization does not, and that it can discover policies that outperform those learned through prior approaches to verified exploration. 
    more » « less