skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: E3Pose: Energy-Efficient Edge-assisted Multi-camera System for Multi-human 3D Pose Estimation
Award ID(s):
Author(s) / Creator(s):
Publisher / Repository:
Date Published:
Page Range / eLocation ID:
52 to 65
Medium: X
San Antonio TX USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Current radio frequency (RF) classification techniques assume only one target in the field of view. Multi‐target recognition is challenging because conventional radar signal processing results in the superposition of target micro‐Doppler signatures, making it difficult to recognise multi‐target activity. This study proposes an angular subspace projection technique that generates multiple radar data cubes (RDC) conditioned on angle (RDC‐ω). This approach enables signal separation in the raw RDC, making possible the utilisation of deep neural networks taking the raw RF data as input or any other data representation in multi‐target scenarios. When targets are in closer proximity and cannot be separated by classical techniques, the proposed approach boosts the relative signal‐to‐noise ratio between targets, resulting in multi‐view spectrograms that boosts the classification accuracy when input to the proposed multi‐view DNN. Our results qualitatively and quantitatively characterise the similarity of multi‐view signatures to those acquired in a single‐target configuration. For a nine‐class activity recognition problem, 97.8% accuracy in a 3‐person scenario is achieved, while utilising DNN trained on single‐target data. We also present the results for two cases of close proximity (sign language recognition and side‐by‐side activities), where the proposed approach has boosted the performance.

    more » « less
  2. The design of optical devices is a complex and time-consuming process. To simplify this process, we present a novel framework of multi-fidelity multi-objective Bayesian optimization with warm starts, called Multi-BOWS. This approach automatically discovers new nanophotonic structures by managing multiple competing objectives and utilizing multi-fidelity evaluations during the design process. We employ our Multi-BOWS method to design an optical device specifically for transparent electromagnetic shielding, a challenge that demands balancing visible light transparency and effective protection against electromagnetic waves. Our approach leverages the understanding that simulations with a coarser mesh grid are faster, albeit less accurate than those using a denser mesh grid. Unlike the earlier multi-fidelity multi-objective method, Multi-BOWS begins with faster, less accurate evaluations, which we refer to as “warm-starting,” before shifting to a dense mesh grid to increase accuracy. As a result, Multi-BOWS demonstrates 3.2–89.9% larger normalized area under the Pareto frontier, which measures a balance between transparency and shielding effectiveness, than low-fidelity only and high-fidelity only techniques for the nanophotonic structures studied in this work. Moreover, our method outperforms an existing multi-fidelity method by obtaining 0.5–10.3% larger normalized area under the Pareto frontier for the structures of interest. 
    more » « less