We address the problem of synthesizing physical animations that can loop seamlessly. We formulate a variational approach by deriving a physical law in a periodic time domain. The trajectory of the animation is represented as a parametric closed curve, and the physical law corresponds to minimizing the bending energy of the curve. Compared to traditional keyframe animation approaches, our formulation is constraint-free, which allows us to apply a standard Gauss--Newton solver. We further propose a fast projection method to efficiently generate an initial guess close to the desired animation. Our method can handle a variety of physical cyclic animations, including clothes, soft bodies with collisions, and N-body systems.
more » « less- Award ID(s):
- 2238839
- PAR ID:
- 10491398
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- Proceedings of the ACM on Computer Graphics and Interactive Techniques
- Volume:
- 6
- Issue:
- 3
- ISSN:
- 2577-6193
- Page Range / eLocation ID:
- 1 to 18
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Interactive textbooks generate big data through student reading participation, including animations, question sets, and auto-graded homework. Animations are multi-step, dynamic visuals with text captions. By dividing new content into smaller chunks of information, student engagement is expected to be high, which aligns with tenets of cognitive load theory. Specifically, students’ clicks are recorded and measure usage, completion, and view time per step and for entire animations. Animation usage data from an interactive textbook for a chemical engineering course in Material and Energy Balances accounts for 60,000 animation views across 140+ unique animations. Data collected across five cohorts between 2016 and 2020 used various metrics to capture animation usage including watch and re-watch rates as well as the length of animation views. Variations in view rate and time were examined across content, parsed by book chapter, and five animation characterizations (Concept, Derivation, Figures and Plots, Physical World, and Spreadsheets). Important findings include: 1) Animation views were at or above 100% for all chapters and cohorts, 2) Median view time varies from 22 s (2-step) to 59 s (6-step) - a reasonable attention span for students and cognitive load, 3) Median view time for animations characterized as Derivation was the longest (40 s) compared to Physical World animations, which resulted in the shortest time (20 s).more » « less
-
Complex animated transitions may be easier to understand when divided into separate, consecutive stages. However, effective staging requires careful attention to both animation semantics and timing parameters. We present Gemini^2, a system for creating staged animations from a sequence of chart keyframes. Given only a start state and an end state, Gemini^2 can automatically recommend intermediate keyframes for designers to consider. The Gemini^2 recommendation engine leverages Gemini, our prior work, and GraphScape to itemize the given complex change into semantic edit operations and to recombine operations into stages with a guided order for clearly conveying the semantics. To evaluate Gemini^2's recommendations, we conducted a human-subject study in which participants ranked recommended animations from both Gemini^2 and Gemini. We find that Gemini^2's animation recommendation ranking is well aligned with subjects' preferences, and Gemini^2 can recommend favorable animations that Gemini cannot support.more » « less
-
Abstract 3D facial animation synthesis from audio has been a focus in recent years. However, most existing literature works are designed to map audio and visual content, providing limited knowledge regarding the relationship between emotion in audio and expressive facial animation. This work generates audio‐matching facial animations with the specified emotion label. In such a task, we argue that separating the content from audio is indispensable—the proposed model must learn to generate facial content from audio content while expressions from the specified emotion. We achieve it by an adaptive instance normalization module that isolates the content in the audio and combines the emotion embedding from the specified label. The joint content‐emotion embedding is then used to generate 3D facial vertices and texture maps. We compare our method with state‐of‐the‐art baselines, including the facial segmentation‐based and voice conversion‐based disentanglement approaches. We also conduct a user study to evaluate the performance of emotion conditioning. The results indicate that our proposed method outperforms the baselines in animation quality and expression categorization accuracy.
-
Background: Animations of scientific concepts may improve comprehension by explaining and visualizing the steps of complex processes, but unless they engage student interest in meaningful ways, their effectiveness as teaching tools is limited. We achieve this through a novel approach to animation design that includes the target audience (undergraduates) so that the resultant animations align with their learner characteristics. Objective: This case study investigated whether undergraduate-generated animations were more effective educational tools than informationally equivalent text-and-illustration presentations and whether learners’ background influenced the relative benefits of animations. Method: Incorporating feedback from faculty and undergraduates, we created animations and text-plus-illustration content to explain how neural signals are generated and measured by scalp electrodes. Neuroscience majors and non-majors were presented with either animations or static presentations followed by comprehension and engagement assessments. Results: Both groups showed comprehension and engagement benefits for animations. Although majors showed better overall comprehension, animations improved comprehension for non-majors over static presentations. Conclusion: When educational content is directed for a target audience, animations can be more effective teaching tools for a broader student audience. Teaching Implications: The relevance of online tools for remote instruction makes animations, developed for and by undergraduates, important tools for effectively introducing difficult content.more » « less
-
Data science tools can help elucidate trends from clickstreams and other interactions generated by students actively using interactive textbooks. Specifically, data generated when using animations, which are multi-step visuals with text captions, will be presented in this work. Each animation step divides content into appropriate chunks, and so aligns with tenets of cognitive load theory. Both the quantity and timing of students’ clicks record provide large data sets when examining students across hundreds of animations and multiple cohorts. Specifically, an interactive textbook for a chemical engineering course in Material and Energy Balances will be examined and build upon data presented previously. While most of the previous data focused on very high reading completion rates (>99% median) compared to traditional textbooks (20-50%), a deeper examination of how long students take when watching animations will be explored. With over 140 unique animations and tens of thousands of completed views over five cohorts, a spectral clustering algorithm applied to students’ animation view times distinguished several types of animation watching behavior as well as monitor changes in this animation watching behavior over the course of a semester. After examining different numbers of clusters, two or three clusters in each chapter captured the animation usage. These clusters usually correspond to a group of students who watched animations at 1x speed (longer), another group who watched at 2x speed (shorter), and a third group, when present, who watched irregularly, including skipping animations. Overall, more students belonged to the belonged to the cluster with longer view times, with 63% of students aggregated over all cohorts and chapters compared to 35% of students in the cluster with shorter view times. The remaining 2% of students belonged to the irregular cluster, which was present in less than one quarter of the chapters. Many students stayed in the same cluster between chapters, while a smaller fraction switched between the longer and shorter clusters.more » « less