skip to main content


Title: Journey from human hands to robot hands: biological inspiration of anthropomorphic robotic manipulators
Abstract

The development of robotic hands that can replicate the complex movements and dexterity of the human hand has been a longstanding challenge for scientists and engineers. A human hand is capable of not only delicate operation but also crushing with power. For performing tasks alongside and in place of humans, an anthropomorphic manipulator design is considered the most advanced implementation, because it is able to follow humans’ examples and use tools designed for people. In this article, we explore the journey from human hands to robot hands, tracing the historical advancements and current state-of-the-art in hand manipulator development. We begin by investigating the anatomy and function of the human hand, highlighting the bone-tendon-muscle structure, skin properties, and motion mechanisms. We then delve into the field of robotic hand development, focusing on highly anthropomorphic designs. Finally, we identify the requirements and directions for achieving the next level of robotic hand technology.

 
more » « less
PAR ID:
10491452
Author(s) / Creator(s):
;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Bioinspiration & Biomimetics
Volume:
19
Issue:
2
ISSN:
1748-3182
Format(s):
Medium: X Size: Article No. 021001
Size(s):
Article No. 021001
Sponsoring Org:
National Science Foundation
More Like this
  1. Humans use all surfaces of the hand for contact-rich manipulation. Robot hands, in contrast, typically use only the fingertips, which can limit dexterity. In this work, we leveraged a potential energy–based whole-hand manipulation model, which does not depend on contact wrench modeling like traditional approaches, to design a robotic manipulator. Inspired by robotic caging grasps and the high levels of dexterity observed in human manipulation, a metric was developed and used in conjunction with the manipulation model to design a two-fingered dexterous hand, the Model W. This was accomplished by simulating all planar finger topologies composed of open kinematic chains of up to three serial revolute and prismatic joints, forming symmetric two-fingered hands, and evaluating their performance according to the metric. We present the best design, an unconventional robot hand capable of performing continuous object reorientation, as well as repeatedly alternating between power and pinch grasps—two contact-rich skills that have often eluded robotic hands—and we experimentally characterize the hand’s manipulation capability. This hand realizes manipulation motions reminiscent of thumb–index finger manipulative movement in humans, and its topology provides the foundation for a general-purpose dexterous robot hand.

     
    more » « less
  2. Grasping a simple object from the side is easy --- unless the object is almost as big as the hand or space constraints require positioning the robot hand awkwardly with respect to the object. We show that humans --- when faced with this challenge --- adopt coordinated finger movements which enable them to successfully grasp objects even from these awkward poses. We also show that it is relatively straight forward to implement these strategies autonomously. Our human-studies approach asks participants to perform grasping task by either ``puppetteering'' a robotic manipulator that is identical~(geometrically and kinematically) to a popular underactuated robotic manipulator~(the Barrett hand), or using sliders to control the original Barrett hand. Unlike previous studies, this enables us to directly capture and compare human manipulation strategies with robotic ones. Our observation is that, while humans employ underactuation, how they use it is fundamentally different (and more effective) than that found in existing hardware. 
    more » « less
  3. Grasping a simple object from the side is easy-unless the object is almost as big as the hand or space constraints require positioning the robot hand awkwardly with respect to the object. We show that humans-when faced with this challenge-adopt coordinated finger movements which enable them to successfully grasp objects even from these awkward poses. We also show that it is relatively straight forward to implement these strategies autonomously. Our human-studies approach asks participants to perform grasping task by either "puppetteering" a robotic manipulator that is identical (geometrically and kinematically) to a popular underactuated robotic manipulator (the Barrett hand), or using sliders to control the original Barrett hand. Unlike previous studies, this enables us to directly capture and compare human manipulation strategies with robotic ones. Our observation is that, while humans employ underactuation, how they use it is fundamentally different (and more effective) than that found in existing hardware. 
    more » « less
  4. Designing robotic hands has been an active area of research and innovation in the last decade. However, little is known about how people perceive robot hands and react to being touched by them. To inform hand design for social robots, we created a database of 73 robot hands and ran two user studies. In the first study, 160 online users rated the hands in our database. Variations in user ratings mostly centered on the perceived Comfortableness, Interestingness, and Industrialness of the hands. In a second lab-based study, users evaluated seven physical hands and had similar ratings to results from the online study. Furthermore, we did not find a significant difference in user ratings before and after the users were touched by the hands. We provide regression models that can predict user ratings from the hand features (e.g., number of fingers) and an online interface for using our robot hand database and predictive models. 
    more » « less
  5. null (Ed.)
    Achieving dexterous in-hand manipulation with robot hands is an extremely challenging problem, in part due to current limitations in hardware design. One notable bottleneck hampering the development of improved hardware for dexterous manipulation is the lack of a standardized benchmark for evaluating in-hand dexterity. In order to address this issue, we establish a new benchmark for evaluating in- hand dexterity, specifically for humanoid type robot hands: the Elliott and Connolly Benchmark. This benchmark is based on a classification of human manipulations established by Elliott and Connolly, and consists of 13 distinct in-hand manipulation patterns. We define qualitative and quantitative metrics for evaluation of the benchmark, and provide a detailed testing protocol. Additionally, we introduce a dexterous robot hand - the CMU Foam Hand III - which is evaluated using the benchmark, successfully completing 10 of the 13 manipulation patterns and outperforming human hand baseline results for several of the patterns. 
    more » « less