Abstract The origin of the very low luminosity of Uranus is unknown, as is the source of the internal tidal dissipation required by the orbits of the Uranian moons. Models of the interior of Uranus often assume that it is inviscid throughout, but recent experiments show that this assumption may not be justified; most of the interior of Uranus lies below the freezing temperature of H2O. We find that the stable solid phase of H2O, which is superionic, has a large viscosity controlled by the crystalline oxygen sublattice. We examine the consequences of finite viscosity by combining ab initio determinations of the thermal conductivity and other material properties of superionic H2O with a thermal evolution model that accounts for heat trapped in the growing frozen core. The high viscosity provides a means of trapping heat in the deep interior while also providing a source of tidal dissipation. The frozen core grows with time because its outer boundary is governed by the freezing transition rather than compositional layering. We find that the presence of a growing frozen core explains the anomalously low heat flow of Uranus. Our thermal evolution model also predicts time-varying tidal dissipation that matches the requirements of the orbits of Miranda, Ariel, and Umbriel. We make predictions that are testable by future space missions, including the tidal Love number of Uranus and the current recessional rates of its moons.
more »
« less
Thermal and Tidal Evolution of Ice Giants with Growing Frozen Cores: The Case of Neptune
Abstract The contrasting internal luminosity of Uranus and Neptune present a challenge to our understanding of the origin and evolution of these bodies, as well as extra-solar ice giants. The thermal evolution of Neptune is known to be nearly consistent with an entirely fluid interior, but this is not a unique solution, and does not account for the tidal dissipation required by the migration of its moons. We examine a model that has been previously shown to explain the thermal and tidal evolution of Uranus: one that features a growing, frozen core. The core traps heat in the interior, affecting the cooling time scale, and provides a source of tidal dissipation. We review the growing, frozen core model, and the computation of thermal and tidal evolution. We then apply this model to Neptune. We find that the growing frozen core model can account for the observed internal luminosity of Neptune and the migration of its moons, in the form of resonances that were either encountered or avoided in the past. We discuss prospects for observational tests of the growing frozen core model and possible implications for understanding the gas giants.
more »
« less
- Award ID(s):
- 2223935
- PAR ID:
- 10491455
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Space Science Reviews
- Volume:
- 220
- Issue:
- 2
- ISSN:
- 0038-6308
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The impact of the inner structure and thermal history of planets on their observable features, such as luminosity or magnetic field, crucially depends on the poorly known heat and charge transport properties of their internal layers. The thermal and electric conductivities of different phases of water (liquid, solid, and super-ionic) occurring in the interior of ice giant planets, such as Uranus or Neptune, are evaluated from equilibrium ab initio molecular dynamics, leveraging recent progresses in the theory and data analysis of transport in extended systems. The implications of our findings on the evolution models of the ice giants are briefly discussed.more » « less
-
null (Ed.)Uranus and Neptune form a distinct class of planets in our Solar System. Given this fact, and ubiquity of similar-mass planets in other planetary systems, it is essential to understand their interior structure and composition. However, there are more open questions regarding these planets than answers. In this review, we concentrate on the things we do not know about the interiors of Uranus and Neptune with a focus on why the planets may be different, rather than the same. We next summarize the knowledge about the planets’ internal structure and evolution. Finally, we identify the topics that should be investigated further on the theoretical front as well as required observations from space missions. This article is part of a discussion meeting issue ‘Future exploration of ice giant systems’.more » « less
-
Aims. The orbit of the outer satellite Alexhelios of (216) Kleopatra is already constrained by adaptive-optics astrometry obtained with the VLT/SPHERE instrument. However, there is also a preceding occultation event in 1980 attributed to this satellite. Here, we try to link all observations, spanning 1980–2018, because the nominal orbit exhibits an unexplained shift by + 60° in the true longitude. Methods. Using both a periodogram analysis and an ℓ = 10 multipole model suitable for the motion of mutually interacting moons about the irregular body, we confirmed that it is not possible to adjust the respective osculating period P 2 . Instead, we were forced to use a model with tidal dissipation (and increasing orbital periods) to explain the shift. We also analysed light curves spanning 1977–2021, and searched for the expected spin deceleration of Kleopatra. Results. According to our best-fit model, the observed period rate is Ṗ 2 = (1.8 ± 0.1) × 10 −8 d d −1 and the corresponding time-lag Δ t 2 = 42 s of tides, for the assumed value of the Love number k 2 = 0.3. This is the first detection of tidal evolution for moons orbiting 100 km asteroids. The corresponding dissipation factor Q is comparable with that of other terrestrial bodies, albeit at a higher loading frequency 2| ω − n |. We also predict a secular evolution of the inner moon, Ṗ 1 = 5.0 × 10 −8 , as well as a spin deceleration of Kleopatra, Ṗ 0 = 1.9 × 10 −12 . In alternative models, with moons captured in the 3:2 mean-motion resonance or more massive moons, the respective values of Δ t 2 are a factor of between two and three lower. Future astrometric observations using direct imaging or occultations should allow us to distinguish between these models, which is important for our understanding of the internal structure and mechanical properties of (216) Kleopatra.more » « less
-
Abstract Many planets in the solar system and across the Galaxy have hydrogen-rich atmospheres overlying more heavy element-rich interiors with which they interact for billions of years. Atmosphere–interior interactions are thus crucial to understanding the formation and evolution of these bodies. However, this understanding is still lacking in part because the relevant pressure–temperature conditions are extreme. We conduct molecular dynamics simulations based on density functional theory to investigate how hydrogen and water interact over a wide range of pressure and temperature, encompassing the interiors of Neptune-sized and smaller planets. We determine the critical curve at which a single homogeneous phase exsolves into two separate hydrogen-rich and water-rich phases, finding good agreement with existing experimental data. We find that the temperature along the critical curve increases with increasing pressure and shows the influence of a change in fluid structure from molecular to atomic near 30 GPa and 3000 K, which may impact magnetic field generation. The internal temperatures of many exoplanets, including TOI-270 d and K2-18 b, may lie entirely above the critical curve: the envelope is expected to consist of a single homogeneous hydrogen–water fluid, which is much less susceptible to atmospheric loss as compared with a pure hydrogen envelope. As planets cool, they cross the critical curve, leading to rainout of water-rich fluid and an increase in internal luminosity. Compositions of the resulting outer, hydrogen-rich and inner, water-rich envelopes depend on age and instellation and are governed by thermodynamics. Rainout of water may be occurring in Uranus and Neptune at present.more » « less
An official website of the United States government
