skip to main content


Title: Ultrathin, Transferred Layers of Silicon Oxynitrides as Tunable Biofluid Barriers for Bioresorbable Electronic Systems
Abstract

Bio/ecoresorbable electronic systems create unique opportunities in implantable medical devices that serve a need over a finite time period and then disappear naturally to eliminate the need for extraction surgeries. A critical challenge in the development of this type of technology is in materials that can serve as thin, stable barriers to surrounding ground water or biofluids, yet ultimately dissolve completely to benign end products. This paper describes a class of inorganic material (silicon oxynitride, SiON) that can be formed in thin films by plasma‐enhanced chemical vapor deposition for this purpose. In vitro studies suggest that SiON and its dissolution products are biocompatible, indicating the potential for its use in implantable devices. A facile process to fabricate flexible, wafer‐scale multilayer films bypasses limitations associated with the mechanical fragility of inorganic thin films. Systematic computational, analytical, and experimental studies highlight the essential materials aspects. Demonstrations in wireless light‐emitting diodes both in vitro and in vivo illustrate the practical use of these materials strategies. The ability to select degradation rates and water permeability through fine tuning of chemical compositions and thicknesses provides the opportunity to obtain a range of functional lifetimes to meet different application requirements.

 
more » « less
NSF-PAR ID:
10491474
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;  ;  ;  ;  ;  ;  ;   « less
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Steam‐cracker tar (SCT) is a by‐product of ethylene production that is in massive quantities globally (>150 × 106tons per year). With few useful applications, the production of unwanted SCT leads to the need for its costly disposal or burning at the boiler plant. The discovery of new uses for SCT would therefore bring both economic and environmental benefits, although, to date, efforts toward employing SCT in diverse applications have been limited, and progress is further hampered by a lack of understanding of the material itself. Although complex and highly heterogeneous in nature, the molecular composition of SCT has the potential to serve as a diverse and tunable feedstock for wide‐ranging applications. Here, a simple solution‐processing method for SCT that allows its conductivity and optical properties to be controlled over orders of magnitude is reported. Here, by way of example, the focus is on the production of transparent conductive thin films, which exhibit a wide range of transparencies (23–93%) and sheet resistances (2.5 Ω □–1to 1.2 kΩ □–1) that are tuned by a combination of solution concentration and thermal annealing. As transparent Joule heaters, even without optimization, these SCT devices show competitive performance compared to established technologies such as those based on reduced graphene oxide, and surpass the temperature stability limit of other materials. Furthermore, it is demonstrated that laser annealing can be used to process the SCT films and directly pattern transparent heaters on an arbitrary substrate. These results highlight the potential of SCT as a feedstock material for electronic applications and suggest that broader classes of either naturally occurring carbon or produced carbonaceous by‐products could prove useful in a range of applications.

     
    more » « less
  2. Flexible biocompatible electronic systems that leverage key materials and manufacturing techniques associated with the consumer electronics industry have potential for broad applications in biomedicine and biological research. This study reports scalable approaches to technologies of this type, where thin microscale device components integrate onto flexible polymer substrates in interconnected arrays to provide multimodal, high performance operational capabilities as intimately coupled biointerfaces. Specificially, the material options and engineering schemes summarized here serve as foundations for diverse, heterogeneously integrated systems. Scaled examples incorporate >32,000 silicon microdie and inorganic microscale light-emitting diodes derived from wafer sources distributed at variable pitch spacings and fill factors across large areas on polymer films, at full organ-scale dimensions such as human brain, over ∼150 cm 2 . In vitro studies and accelerated testing in simulated biofluids, together with theoretical simulations of underlying processes, yield quantitative insights into the key materials aspects. The results suggest an ability of these systems to operate in a biologically safe, stable fashion with projected lifetimes of several decades without leakage currents or reductions in performance. The versatility of these combined concepts suggests applicability to many classes of biointegrated semiconductor devices. 
    more » « less
  3. Abstract

    Strongly electric fish use gradients of ions within their bodies to generate stunning external electrical discharges; the most powerful of these organisms, the Atlantic torpedo ray, can produce pulses of over 1 kW from its electric organs. Despite extensive study of this phenomenon in nature, the development of artificial power generation schemes based on ion gradients for portable, wearable, or implantable human use has remained out of reach. Previously, an artificial electric organ inspired by the electric eel demonstrated that electricity generated from ion gradients within stacked hydrogels can exceed 100 V. The current of this power source, however, was too low to power standard electronics. Here, an artificial electric organ inspired by the unique morphologies of torpedo rays for maximal current output is introduced. This power source uses a hybrid material of hydrogel‐infused paper to create, organize, and reconfigure stacks of thin, arbitrarily large gel films in series and in parallel. The resulting increase in electrical power by almost two orders of magnitude compared to the original eel‐inspired design makes it possible to power electronic devices and establishes that biology's mechanism of generating significant electrical power can now be realized from benign and soft materials in a portable size.

     
    more » « less
  4. Abstract

    Bending and folding techniques such as origami and kirigami enable the scale‐invariant design of 3D structures, metamaterials, and robots from 2D starting materials. These design principles are especially valuable for small systems because most micro‐ and nanofabrication involves lithographic patterning of planar materials. Ultrathin films of inorganic materials serve as an ideal substrate for the fabrication of flexible microsystems because they possess high intrinsic strength, are not susceptible to plasticity, and are easily integrated into microfabrication processes. Here, atomic layer deposition (ALD) is employed to synthesize films down to 2 nm thickness to create membranes, metamaterials, and machines with micrometer‐scale dimensions. Two materials are studied as model systems: ultrathin SiO2and Pt. In this thickness limit, ALD films of these materials behave elastically and can be fabricated with fJ‐scale bending stiffnesses. Further, ALD membranes are utilized to design micrometer‐scale mechanical metamaterials and magnetically actuated 3D devices. These results establish thin ALD films as a scalable basis for micrometer‐scale actuators and robotics.

     
    more » « less
  5. Abstract

    Neural regeneration devices interface with the nervous system and can provide flexibility in material choice, implantation without the need for additional surgeries, and the ability to serve as guides augmented with physical, biological (e.g., cellular), and biochemical functionalities. Given the complexity and challenges associated with neural regeneration, a 3D printing approach to the design and manufacturing of neural devices can provide next‐generation opportunities for advanced neural regeneration via the production of anatomically accurate geometries, spatial distributions of cellular components, and incorporation of therapeutic biomolecules. A 3D printing‐based approach offers compatibility with 3D scanning, computer modeling, choice of input material, and increasing control over hierarchical integration. Therefore, a 3D printed implantable platform can ultimately be used to prepare novel biomimetic scaffolds and model complex tissue architectures for clinical implants in order to treat neurological diseases and injuries. Further, the flexibility and specificity offered by 3D printed in vitro platforms have the potential to be a significant foundational breakthrough with broad research implications in cell signaling and drug screening for personalized healthcare. This progress report examines recent advances in 3D printing strategies for neural regeneration as well as insight into how these approaches can be improved in future studies.

     
    more » « less