Abstract The photosynthetic cyanobacterium Trichodesmium is widely distributed in the surface low latitude ocean where it contributes significantly to N2 fixation and primary productivity. Previous studies found nifH genes and intact Trichodesmium colonies in the sunlight-deprived meso- and bathypelagic layers of the ocean (200–4000 m depth). Yet, the ability of Trichodesmium to fix N2 in the dark ocean has not been explored. We performed 15N2 incubations in sediment traps at 170, 270 and 1000 m at two locations in the South Pacific. Sinking Trichodesmium colonies fixed N2 at similar rates than previously observed in the surface ocean (36–214 fmol N cell−1 d−1). This activity accounted for 40 ± 28% of the bulk N2 fixation rates measured in the traps, indicating that other diazotrophs were also active in the mesopelagic zone. Accordingly, cDNA nifH amplicon sequencing revealed that while Trichodesmium accounted for most of the expressed nifH genes in the traps, other diazotrophs such as Chlorobium and Deltaproteobacteria were also active. Laboratory experiments simulating mesopelagic conditions confirmed that increasing hydrostatic pressure and decreasing temperature reduced but did not completely inhibit N2 fixation in Trichodesmium. Finally, using a cell metabolism model we predict that Trichodesmium uses photosynthesis-derived stored carbon to sustain N2 fixation while sinking into the mesopelagic. We conclude that sinking Trichodesmium provides ammonium, dissolved organic matter and biomass to mesopelagic prokaryotes.
more »
« less
Nitrogen Fixation and Ammonium Assimilation Pathway Expression of Geobacter sulfurreducens Changes in Response to the Anode Potential in Microbial Electrochemical Cells
Nitrogen gas (N2) fixation in the anode-respiring bacterium Geobacter sulfurreducens occurs through complex, multistep processes. Optimizing ammonium (NH4+) production from this bacterium in microbial electrochemical technologies (METs) requires an understanding of how those processes are regulated in response to electrical driving forces. In this study, we quantified gene expression levels (via RNA sequencing) of G. sulfurreducens growing on anodes fixed at two different potentials (−0.15 V and +0.15 V versus standard hydrogen electrode). The anode potential had a significant impact on the expression levels of N2 fixation genes. At −0.15 V, the expression of nitrogenase genes, such as nifH, nifD, and nifK, significantly increased relative to that at +0.15 V, as well as genes associated with NH4+ uptake and transformation, such as glutamine and glutamate synthetases. Metabolite analysis confirmed that both of these organic compounds were present in significantly higher intracellular concentrations at −0.15 V. N2 fixation rates (estimated using the acetylene reduction assay and normalized to total protein) were significantly larger at −0.15 V. Genes expressing flavin-based electron bifurcation complexes, such as electron-transferring flavoproteins (EtfAB) and the NADH-dependent ferredoxin:NADP reductase (NfnAB), were also significantly upregulated at −0.15 V, suggesting that these mechanisms may be involved in N2 fixation at that potential. Our results show that in energy-constrained situations (i.e., low anode potential), the cells increase per-cell respiration and N2 fixation rates. We hypothesize that at −0.15 V, they increase N2 fixation activity to help maintain redox homeostasis, and they leverage electron bifurcation as a strategy to optimize energy generation and use.
more »
« less
- Award ID(s):
- 1840956
- PAR ID:
- 10491589
- Editor(s):
- Glass, Jennifer B.
- Publisher / Repository:
- ASM Journals
- Date Published:
- Journal Name:
- Applied and Environmental Microbiology
- Volume:
- 89
- Issue:
- 4
- ISSN:
- 0099-2240
- Subject(s) / Keyword(s):
- electromicrobiology, Geobacter, nitrogen fixation
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Diatom–diazotroph associations (DDAs) are one of the most important symbiotic dinitrogen (N2) fixing groups in the oligotrophic ocean. Despite their capability to fix N2, ammonium (NH4+) remains a key nitrogen (N) source for DDAs, and the effect of NH4+ on their metabolism remains elusive. Here, we developed a coarse-grained, cellular model of the DDA with NH4+ uptake and quantified how the level of extracellular NH4+ influences metabolism and nutrient exchange within the symbiosis. The model shows that, under a fixed growth rate, an increased NH4+ concentration may lower the required level of N2 fixation and photosynthesis, and decrease carbon (C) and N exchange. A low-NH4+ environment leads to more C and N in nutrient exchange and more fixed N2 to support a higher growth rate. With higher growth rates, nutrient exchange and metabolism increased. Our study shows a strong effect of NH4+ on metabolic processes within DDAs, and thus highlights the importance of in situ measurement of NH4+ concentrations.more » « less
-
null (Ed.)Moss-associated N2 fixation provides a substantial but heterogeneous input of new N to nutrient-limited ecosystems at high latitudes. In spite of the broad diversity of mosses found in boreal and Arctic ecosystems, the extent to which host moss identity drives variation in N2 fixation rates remains largely undetermined. We used 15N2 incubations to quantify the fixation rates associated with 34 moss species from 24 sites ranging from 60° to 68° N in Alaska, USA. Remarkably, all sampled moss genera fixed N2, including well-studied feather and peat mosses and genera such as Tomentypnum, Dicranum, and Polytrichum. The total moss-associated N2 fixation rates ranged from almost zero to 3.2 mg N m−2 d−1, with an average of 0.8 mg N m−2 d−1, based on abundance-weighted averages of all mosses summed for each site. Random forest models indicated that moss taxonomic family was a better predictor of rate variation across Alaska than any of the measured environmental factors, including site, pH, tree density, and mean annual precipitation and temperature. Consistent with this finding, mixed models showed that trends in N2 fixation rates among moss genera were consistent across biomes. We also found “hotspots” of high fixation rates in one-fourth of sampled sites. Our results demonstrated the importance of moss identity in influencing N2 fixation rates. This in turn indicates the potential utility of moss identity when making ecosystem N input predictions and exploring other sources of process rate variation.more » « less
-
We hypothesized that environmental variation at the patch scale (1 - 10’s m) would facilitate the co-occurrence of N2 fixation and denitrification through the formation of hot spots in streams. We measured rates of N2 fixation and denitrification and relative abundances of the genes nifH and nirS in patches determined by channel geomorphic units and substrate type in 4 Idaho and 3 Michigan streams encompassing a gradient of N and P concentrations. This data package includes patch-level measurements of N2 fixation and denitrification rates, relative gene abundances of nifH and nirS, and environmental covariates (nutrient concentrations, water temperature, surface and subsurface dissolved oxygen concentrations, organic matter content) that were used to explore the factors that could predict process rates and relative gene abundances across patches and streams.more » « less
-
Abstract Microbial gene loss is hypothesized to be beneficial when gene function is costly, and the gene product can be replaced via cross-feeding from a neighbor. However, cross-fed metabolites are often only available at low concentrations, limiting the growth rates of gene-loss mutants that are dependent on those metabolites. Here we define conditions that support a loss of function mutant in a three-member bacterial community of (i) N2-utilizing Rhodopseudomonas palustris as an NH4+-excreting producer, (ii) N2-utilizing Vibrio natriegens as the ancestor, and (iii) a V. natriegens N2-utilizaton mutant that is dependent on the producer for NH4+. Using experimental and simulated cocultures, we found that the ancestor outcompeted the mutant due to low NH4+ availability under uniform conditions where both V. natriegens strains had equal access to nutrients. However, spatial structuring that increasingly segregated the mutant from the ancestor, while maintaining access to NH4+ from the producer, allowed the mutant to avoid extinction. Counter to predictions, mutant enrichment under spatially structured conditions did not require a growth rate advantage from gene loss and the mutant coexisted with its ancestor. Thus, cross-feeding can originate from loss-of-function mutations that are otherwise detrimental, provided that the mutant can segregate from a competitive ancestor.more » « less
An official website of the United States government

