skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hybridization in the absence of an ecotone favors hybrid success in woodrats ( Neotoma spp.)
Abstract Hybridization is a common process that has broadly impacted the evolution of multicellular eukaryotes; however, how ecological factors influence this process remains poorly understood. Here, we report the findings of a 3-year recapture study of the Bryant’s woodrat (Neotoma bryanti) and desert woodrat (Neotoma lepida), two species that hybridize within a creosote bush (Larrea tridentata) shrubland in Whitewater, CA, USA. We used a genotype-by-sequencing approach to characterize the ancestry distribution of individuals across this hybrid zone coupled with Cormack–Jolly–Seber modeling to describe demography. We identified a high frequency of hybridization at this site with ~40% of individuals possessing admixed ancestry, which is the result of multigenerational backcrossing and advanced hybrid-hybrid crossing. F1, F2, and advanced generation hybrids had apparent survival rates similar to parental N. bryanti, while parental and backcross N. lepida had lower apparent survival rates and were far less abundant. Compared to bimodal hybrid zones where hybrids are often rare and selected against, we find that hybrids at Whitewater are common and have comparable survival to the dominant parental species, N. bryanti. The frequency of hybridization at Whitewater is therefore likely limited by the abundance of the less common parental species, N. lepida, rather than selection against hybrids.  more » « less
Award ID(s):
1656497
PAR ID:
10491596
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Evolution
Date Published:
Journal Name:
Evolution
Volume:
77
Issue:
4
ISSN:
0014-3820
Page Range / eLocation ID:
959-970
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Hybridization between species provides unique opportunities to understand evolutionary processes that are linked to reproductive isolation and, ultimately, speciation. However, the extrinsic factors that limit hybridization are poorly understood for most animal systems. Although the spatial ecology of individuals in natural habitats is fundamental to shaping reproductive success and survival, analyses of the spatial ecology of hybrids and their parental groups are rarely reported. Here, we used radiotelemetry to monitor wild rattlesnakes across an interspecific hybrid zone (Crotalus scutulatus and Crotalus viridis) and measured movement parameters and space use (utilization distributions) of individuals to evaluate the hypothesis that hybridization resulted in transgressive or atypical movement patterns. Unexpectedly, of the spatial metrics we investigated, we found that hybrids were very similar to parental individuals. Nonetheless, hybrids did show increased patchiness of core utilization distributions, but this result is likely to be driven by increased habitat patchiness in the hybrid zone. Overall, we did not find evidence for overt extrinsic barriers to hybridization associated with spatial ecology; thus, we suggest that the close evolutionary history between the two parental species and their ecological and behavioural similarities are likely to increase the probability of hybridization events in this unique region of New Mexico. 
    more » « less
  2. Hybridization is increasingly recognized as an important force impacting adaptation and evolution in many lineages of fungi. During hybridization, divergent genomes and alleles are brought together into the same cell, potentiating adaptation by increasing genomic plasticity. Here, we review hybridization in fungi by focusing on two fungal pathogens of animals. Hybridization is common between the basidiomycete yeast species Cryptococcus neoformans × Cryptococcus deneoformans, and hybrid genotypes are frequently found in both environmental and clinical settings. The two species show 10–15% nucleotide divergence at the genome level, and their hybrids are highly heterozygous. Though largely sterile and unable to mate, these hybrids can propagate asexually and generate diverse genotypes by nondisjunction, aberrant meiosis, mitotic recombination, and gene conversion. Under stress conditions, the rate of such genetic changes can increase, leading to rapid adaptation. Conversely, in hybrids formed between lineages of the chytridiomycete frog pathogen Batrachochytrium dendrobatidis (Bd), the parental genotypes are considerably less diverged (0.2% divergent). Bd hybrids are formed from crosses between lineages that rarely undergo sex. A common theme in both species is that hybrids show genome plasticity via aneuploidy or loss of heterozygosity and leverage these mechanisms as a rapid way to generate genotypic/phenotypic diversity. Some hybrids show greater fitness and survival in both virulence and virulence-associated phenotypes than parental lineages under certain conditions. These studies showcase how experimentation in model species such as Cryptococcus can be a powerful tool in elucidating the genotypic and phenotypic consequences of hybridization. 
    more » « less
  3. Abstract Migratory divides, hybrid zones between populations that use different seasonal migration routes, are hypothesised to contribute to speciation. Specifically, relative to parental species, hybrids at divides are predicted to exhibit (1) intermediate migratory behaviour and (2) reduced fitness as a result. We provide the first direct test of the second prediction here with one of the largest existing avian tracking datasets, leveraging a divide between Swainson's thrushes where the first prediction is supported. Using detection rates as a proxy for survival, our results supported the migratory divide hypothesis with lower survival rates for hybrids than parental forms. This finding was juvenile‐specific (vs. adults), suggesting selection against hybrids is stronger earlier in life. Reduced hybrid survival was not explained by selection against intermediate phenotypes or negative interactions among phenotypes. Additional work connecting specific features of migration is needed, but these patterns provide strong support for migration as an ecological driver of speciation. 
    more » « less
  4. Linnen, Catherine; Zelditch, Miriam (Ed.)
    Abstract Although avian hybrid zones in the Great Plains have been studied for almost 70 years, we know surprisingly little about the fitness costs to hybrids that keep these zones narrow. We compare age ratios in grosbeaks (Pheucticus ludovicianus and P. melanocephalus) and towhees (Pipilo erythropthalums and P. maculatus), two species pairs that differ in their life histories and molt schedules, to evaluate survival between hybrids and parentals. We then contrast molt and migratory divides as possible sources of selection against hybrids. Hybrid grosbeaks had 27%–33% lower survival relative to their parentals, whereas hybrid towhees had survival rates similar to parentals. Age ratio data for hybrid grosbeaks suggest high mortality in older birds, as expected if selection operates after the first year of life. This pattern is consistent with parental species of grosbeaks having contrasting molt schedules relative to migration, suggesting high mortality costs to hybrids driven by molt biology, which are expressed later in life. Contrasts in molt schedules are absent in towhees. While migratory divides may exist for towhees and grosbeaks, the low adult survival of hybrid grosbeaks suggest that molt may be an important and underappreciated source of selection maintaining this and other narrow avian hybrid zones. 
    more » « less
  5. Abstract Hybridization between taxa generates new pools of genetic variation that can lead to different environmental responses and demographic trajectories over time than seen in parental lineages. The potential for hybrids to have novel environmental tolerances may be increasingly important in mountainous regions, which are rapidly warming and drying due to climate change. Demographic analysis makes it possible to quantify within‐ and among‐species responses to variation in climate and to predict population growth rates as those conditions change. We estimated vital rates and population growth in 13 natural populations of two cinquefoil taxa (Potentilla hippianaandP. pulcherrima) and their hybrid across elevation gradients in the Southern Rockies. Using three consecutive years of environmental and demographic data, we compared the demographic responses of hybrid and parental taxa to environmental variation across space and time. All three taxa had lower predicted population growth rates under warm, dry conditions. However, the magnitude of these responses varied among taxa and populations. Hybrids had consistently lower predicted population growth rates thanP. hippiana. In contrast, hybrid performance relative toP. pulcherrimavaried with population and climate, with the hybrid maintaining relatively stable growth rates while populations ofP. pulcherrimashrank under warm, dry conditions. Our findings demonstrate that hybrids in this system are neither intrinsically unfit nor universally more vigorous than parents, suggesting that the demographic consequences of hybridization are context‐dependent. Our results also imply that shifts to warmer and drier conditions could have particularly negative repercussions forP. pulcherrima, which is currently the most abundant taxon in the study area, possibly as a legacy of more favorable historical climates. More broadly, the distributions of these long‐lived taxa are lagging behind their demographic trajectories, such that the currently less commonP. hippianacould become the most abundant of thePotentillataxa as this region continues to warm and dry. 
    more » « less