The future of economic and national security, commerce, and technology are becoming more dependent on quantum information science (QIS). In addition to traditional STEM fields, there will be a broad need to develop a "quantum smart" workforce, and this development needs to begin before college. Since most students will not major in physics, it is vital to expose precollege students to quantum concepts that are relevant to everyday experiences with information security, smart phones, computers, and other widely used technology. This project, funded by the US National Science Foundation, provides opportunities for students to learn about various aspects of quantum science, regardless of whether they take a physics class. This project provides opportunities for secondary educators to learn and practice QIS. Project partners include universities, businesses, and professional organizations such as Science Teacher Association in Utah and Texas, American Association of Physics Teachers, Institute for Quantum Computing, and Perimeter Institute for Theoretical Physics. In particular, we utilize a trainer of trainer approach, however, the teacher professional development is tied to summer camp experience for students during which the teachers can test their delivery of the material with students in the summer camp. In this paper we will discuss the content areas and provide an outline of the professional development model.
more »
« less
THE QUANTUM FOR ALL PROJECT: TEACHER PROFESSIONAL DEVELOPMENT MODEL
Quantum information science (QIS) is of growing importance to economic and national security, commerce, and technology. The development of a "quantum smart" workforce needs to begin before college since most students will not major in physics. Thus, it is vital to expose K-12 students to quantum concepts that are relevant to everyday experiences with credit card security, phones, computers, and basic technology and to prepare teachers to teach this content. The logical venue for exposure to basic ideas in quantum science might be a high school physics course, or even a physical science course if a full physics course is not offered. Professional development (PD) for educators typically includes 1-2 weeks of intensive instruction, usually in the summer. Teachers are then expected to remember what they learned and implement it several months after the PD. The model is based on prior research indicating that an educator needs a minimum of 80 hours of PD to become comfortable enough to implement the new instruction in their classroom. However, little research has been done as to how much they actually implement. For the past three years, we have been engaged in a project funded by the US National Science Foundation to build mechanisms (materials and PD strategies) for educating a quantum-ready workforce. Our PD model is based on pedagogical techniques used in classrooms, specifically the components of learn then practice in order to avoid cognitive overload. Instruction is more effective when the learners (teachers or students) are given opportunities to actively engage in the learning process through interaction/collaboration with peers, exploring challenges, and practicing what they have learned. This paper will share the logistics of our new PD new model, challenges, finding from our current research, and implications for future PD in K-16.
more »
« less
- Award ID(s):
- 2048691
- PAR ID:
- 10491680
- Publisher / Repository:
- https://library.iated.org/
- Date Published:
- Page Range / eLocation ID:
- 3337 to 3345
- Subject(s) / Keyword(s):
- Quantum, STEM, Teacher Professional Development.
- Format(s):
- Medium: X
- Location:
- Palma, Spain
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Quantum information science (QIS) undergirds a set of critical technologies that will affect information security, smart phones, computers, and other widely used technology. There is a broad need to develop a "quantum smart" workforce in addition to traditional STEM fields, and this development needs to occur in precollege education. The US National Science Foundation has funded the Quantum for All project to provide professional development opportunities for STEM educators to learn about QIS and how to implement it in the classroom. The teacher professional development is tied to summer camp experience for students during which the teachers can test their delivery of the material with students in the summer camp. In this paper we will discuss the outcomes for students in the summer camp for the various content areas presented and relate that back to results of research on teachers and their performance in the professional development experience.more » « less
-
The "Computer Science for All" initiative advocates for universal access to computer science (CS) instruction. A key strategy toward this end has been to establish CS content standards outlining what all students should have the opportunity to learn. Standards can support curriculum quality and access to quality CS instruction, but only if they are used to inform curriculum design and instructional practice. Professional learning offered to teachers of CS has typically focused on learning to implement a specific curriculum, rather than deepening understanding of CS concepts. We set out to develop a set of educative resources, formative assessment tools and teacher professional development (PD) sessions to support middle school CS teachers' knowledge of CS standards and standards-aligned formative assessment literacy. Our PD and associated resources focus on five CS standards in the Algorithm and Programming strand and are meant to support teachers using any CS curriculum or programming language. In this experience report, we share what we learned from implementing our standards-based PD with four middle school CS teachers. Teachers initially perceived standards as irrelevant to their teaching but they came to appreciate how a deeper understanding of CS concepts could enhance their instructional practice. Analysis of PD observations and exit surveys, teacher interviews, and teacher responses to a survey assessing CS pedagogical content knowledge demonstrated the complexity of using content standards as a driver of high-quality CS instruction at the middle school level, and reinforced our position that more standards-focused PD is needed.more » « less
-
Langran, E.; Christensen, P.; Sanson, J. (Ed.)The use of technology has positively impacted instruction in math and science, including instruction for students with significant cognitive disabilities (SCD). Additionally, virtual reality (VR) technology has been used for students with SCD and has resulted in positive outcomes. However, it has not been widely adapted to teach science concepts to students with SCD, and part of that is the teacher's lack of understanding and technical knowledge of technology. This narrative case study aimed to describe the teachers of students with SCD’s knowledge, attitudes, and instructional practices as they engage in professional development and the use of VR in the classroom. To collect data, the researcher used interviews, virtual reality training, PD and classroom observations, and document analysis. The study showed that prior to this research, teachers did not use virtual reality in the classroom. They felt excited about getting trained on it and anxious in using it due to the spectrum of students’ cognitive abilities. Although they liked to use VR, they pointed out that “time to develop and/ or implement the technology in the classroom” was the biggest constraint. The teachers wanted to use VR to reinforce the concepts taught in the classroom. In conclusion, the teachers' professional development on virtual reality has allowed them opportunities to understand VR use in instruction and express their perceptions about it.more » « less
-
This article describes a professional development (PD) model, the CT-Integration Cycle, that supports teachers in learning to integrate computational thinking (CT) and computer science principles into their middle school science and STEM instruction. The PD model outlined here includes collaborative design (codesign; Voogt et al., 2015) of curricular units aligned with the Next Generation Science Standards (NGSS) that use programmable sensors. Specifically, teachers can develop or modify curricular materials to ensure a focus on coherent, student-driven instruction through the investigation of scientific phenomena that are relevant to students and integrate CT and sensor technology. Teachers can implement these storylines and collaboratively reflect on their instructional practices and student learning. Throughout this process, teachers may develop expertise in CT-integrated science instruction as they plan and use instructional practices aligned with the NGSS and foreground CT. This paper describes an examination of a group of five middle school teachers’ experiences during one iteration of the CT-Integration Cycle, including their learning, planning, implementation, and reflection on a unit they codesigned. Throughout their participation in the PD, the teachers expanded their capacity to engage deeply with CT practices and thoughtfully facilitated a CT-integrated unit with their students.more » « less
An official website of the United States government

