skip to main content


This content will become publicly available on January 1, 2025

Title: Controlling Product Selectivity During Dioxygen Reduction with Mn Complexes Using Pendent Proton Donor Relays and Added Base
The catalytic reduction of dioxygen (O2) is important in biological energy conversion and alternative energy applications. In comparison to Fe- and Co-based systems, examples of catalytic O2 reduction by homogeneous Mn-based systems is relatively sparse. Motivated by this lack of knowledge, two Mn-based catalysts for the oxygen reduction reaction (ORR) containing a bipyridine-based non-porphyrinic ligand framework have been developed to evaluate how pendent proton donor relays alter activity and selectivity for the ORR, where Mn(p-tbudhbpy)Cl (1) was used as a control complex and Mn(nPrdhbpy)Cl (2) contains a pendent –OMe group in the secondary coordination sphere. Using an ammonium-based proton source, N,N′-diisopropylethylammonium hexafluorophosphate, we analyzed catalytic activity for the ORR: 1 was found to be 64% selective for H2O2 and 2 is quantitative for H2O2, with O2 binding to the reduced Mn(II) center being the rate-determining step. Upon addition of the conjugate base, N,N′-diisopropylethylamine, the observed catalytic selectivity of both 1 and 2 shifted to H2O as the primary product. Interestingly, while the shift in selectivity suggests a change in mechanism for both 1 and 2, the catalytic activity of 2 is substantially enhanced in the presence of base and the rate-determining step becomes the bimetallic cleavage of the O–O bond in a Mn-hydroperoxo species. These data suggest that the introduction of pendent relay moieties can improve selectivity for H2O2 at the expense of diminished reaction rates from strong hydrogen bonding interactions. Further, although catalytic rate enhancements are observed with a change in product selectivity when base is added to buffer proton activity, the pendent relays stabilize dimer intermediates, limiting the maximum rate.  more » « less
Award ID(s):
2102156
NSF-PAR ID:
10491717
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Royal Chemical Society
Date Published:
Journal Name:
Chemical Science
ISSN:
2041-6520
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The nitrogen cycle plays a key role biological, energy, environment, and industrial processes. Breaking natural nitrogen cycle is leading to accumulation of reactive nitrogen chemicals in water and atmosphere, therefore, better management of N-cycle has emerged as an urgent research need in energy and environmental science. Removing excessive nitrate (NO3−) from wastewater has increasingly become an important research topic in light of the growing concerns over the related environmental problems and health issues. In particular, catalytic/electrocatalytic approaches are attractive for NO3− removal, because NO3− from wastewater can be converted to N2 and released back to the atmosphere using renewable H2 or electricity, closing the loop of the global N cycle. However, achieving high product selectivity towards the desirable N2 has proven challenging in the direct NO3−-to-N2 reaction. In this presentation, we will report our finding on unique and ultra-high electrochemical NO3−-to-NO2−activity on an oxide-derived silver electrode (OD-Ag). Up to 98% selectivity and 95% faradaic efficiency of NO2− were observed and maintained under a wide potential window. Benefiting from overcoming the rate-determining barrier of NO3−-to-NO2−during nitrate reduction, further reduction of accumulated NO2− to NH4+ can be well regulated by the cathodic potential on OD-Ag to achieve a faradaic efficiency of 89%. These indicated the potential controllable pathway to the key nitrate reduction products (NO2−or NH4+) on OD-Ag. DFT computations provided insights into the unique NO2−selectivity on Ag electrodes compared with Cu, showing the critical role of a proton-assisted mechanism. Based on the ultra-high NO3−-to-NO2−activity on OD-Ag, we designed a novel electrocatalytic-catalytic combined process for denitrifying real-world NO3−-containing agricultural wastewater, leading to 95+% of NO3− conversion to N2 with minimal NOx gases. Importantly, NO2− derived from nitrate may serve as a crucial reactive platform for distributed production of various nitrogen products, such as NO, NH2OH, NH3, and urea. 
    more » « less
  2. Proton-exchange membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) are promising power sources from portable electronic devices to vehicles. The high-cost issue of these low-temperature fuel cells can be primarily addressed by using platinum-group metal (PGM)-free oxygen reduction reaction (ORR) catalysts, in particular atomically dispersed metal–nitrogen–carbon (M–N–C, M = Fe, Co, Mn). Furthermore, a significant advantage of M–N–C catalysts is their superior methanol tolerance over Pt, which can mitigate the methanol cross-over effect and offer great potential of using a higher concentration of methanol in DMFCs. Here, we investigated the ORR catalytic properties of M–N–C catalysts in methanol-containing acidic electrolytes via experiments and density functional theory (DFT) calculations. FeN 4 sites demonstrated the highest methanol tolerance ability when compared to metal-free pyridinic N, CoN 4 , and MnN 4 active sites. The methanol adsorption on MN 4 sites is even strengthened when electrode potentials are applied during the ORR. The negative influence of methanol adsorption becomes significant for methanol concentrations higher than 2.0 M. However, the methanol adsorption does not affect the 4e − ORR pathway or chemically destroy the FeN 4 sites. The understanding of the methanol-induced ORR activity loss guides the design of promising M–N–C cathode catalyst in DMFCs. Accordingly, we developed a dual-metal site Fe/Co–N–C catalyst through a combined chemical-doping and adsorption strategy. Instead of generating a possible synergistic effect, the introduced Co atoms in the first doping step act as “scissors” for Zn removal in metal–organic frameworks (MOFs), which is crucial for modifying the porosity of the catalyst and providing more defects for stabilizing the active FeN 4 sites generated in the second adsorption step. The Fe/Co–N–C catalyst significantly improved the ORR catalytic activity and delivered remarkably enhanced peak power densities ( i.e. , 502 and 135 mW cm −2 ) under H 2 –air and methanol–air conditions, respectively, representing the best performance for both types of fuel cells. Notably, the fundamental understanding of methanol tolerance, along with the encouraging DMFC performance, will open an avenue for the potential application of atomically dispersed M–N–C catalysts in other direct alcohol or ammonia fuel cells. 
    more » « less
  3. Removing excessive nitrate (NO3−) from wastewater has increasingly become an important research topic in light of the growing concerns over the related environmental problems and health issues. In particular, catalytic/electrocatalytic approaches are attractive for NO3− removal, because NO3− from wastewater can be converted to N2 and released back to the atmosphere using renewable H2 or electricity, closing the loop of the global N cycle. However, achieving high product selectivity towards the desirable N2 has proven challenging in the direct NO3−-to-N2 reaction. In this presentation, we will report our finding on unique and ultra-high electrochemical NO3−-to-NO2−activity on an oxide-derived silver electrode (OD-Ag). Up to 98% selectivity and 95% faradaic efficiency of NO2− were observed and maintained under a wide potential window. Benefiting from overcoming the rate-determining barrier of NO3−-to-NO2−during nitrate reduction, further reduction of accumulated NO2− to NH4+ can be well regulated by the cathodic potential on OD-Ag to achieve a faradaic efficiency of 89%. These indicated the potential controllable pathway to the key nitrate reduction products (NO2−or NH4+) on OD-Ag. DFT computations provided insights into the unique NO2−selectivity on Ag electrodes compared with Cu, showing the critical role of a proton-assisted mechanism. Based on the ultra-high NO3−-to-NO2−activity on OD-Ag, we designed a novel electrocatalytic-catalytic combined process for denitrifying real-world NO3−-containing agricultural wastewater, leading to 95+% of NO3− conversion to N2 with minimal NOX gases. In addition to the wastewater treatment process to N2 and electrochemical synthesis of NH3, NO2− derived from electrocatalytic NO3− conversion can serve as a reactive platform for distributed production of various nitrogen products. Our new research progress along this direction will be briefly presented. 
    more » « less
  4. The two-electron and two-proton p -hydroquinone/ p -benzoquinone (H 2 Q/BQ) redox couple has mechanistic parallels to the function of ubiquinone in the electron transport chain. This proton-dependent redox behavior has shown applicability in catalytic aerobic oxidation reactions, redox flow batteries, and co-electrocatalytic oxygen reduction. Under nominally aprotic conditions in non-aqueous solvents, BQ can be reduced by up to two electrons in separate electrochemically reversible reactions. With weak acids (AH) at high concentrations, potential inversion can occur due to favorable hydrogen-bonding interactions with the intermediate monoanion [BQ(AH) m ]˙ − . The solvation shell created by these interactions can mediate a second one-electron reduction coupled to proton transfer at more positive potentials ([BQ(AH) m ]˙ − + n AH + e − ⇌ [HQ(AH) (m+n)−1 (A)] 2− ), resulting in an overall two electron reduction at a single potential at intermediate acid concentrations. Here we show that hydrogen-bonded adducts of reduced quinones and the proton donor 2,2,2-trifluoroethanol (TFEOH) can mediate the transfer of electrons to a Mn-based complex during the electrocatalytic reduction of dioxygen (O 2 ). The Mn electrocatalyst is selective for H 2 O 2 with only TFEOH and O 2 present, however, with BQ present under sufficient concentrations of TFEOH, an electrogenerated [H 2 Q(AH) 3 (A) 2 ] 2− adduct (where AH = TFEOH) alters product selectivity to 96(±0.5)% H 2 O in a co-electrocatalytic fashion. These results suggest that hydrogen-bonded quinone anions can function in an analogous co-electrocatalytic manner to H 2 Q. 
    more » « less
  5. We report a new terpyridine-based FeN3O catalyst, Fe(tpytbupho)Cl2, which reduces O2 to H2O. Variable concentration and variable temperature spectrochemical studies with decamethylferrocene as a chemical reductant in acetonitrile solution enabled the elucidation of key reaction parameters for the catalytic reduction of O2 to H2O by Fe(tpytbupho)Cl2. These mechanistic studies suggest that a 2 + 2 mechanism is operative, where hydrogen peroxide is produced as a discrete intermediate, prior to further reduction to H2O. Consistent with this proposal, the spectrochemically measured first-order rate constant k (s−1) value for H2O2 reduction is larger than that for O2 reduction. Further, significant H2O2 production is observed under hydrodynamic conditions in rotating ring-disk electrode measurements, where the product can be swept away from the cathode surface before further reduction occurs. 
    more » « less