Abstract BackgroundFour severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants predominated in the United States since 2021. Understanding disease severity related to different SARS-CoV-2 variants remains limited. MethodViral genome analysis was performed on SARS-CoV-2 clinical isolates circulating March 2021 through March 2022 in Cleveland, Ohio. Major variants were correlated with disease severity and patient outcomes. ResultsIn total 2779 patients identified with either Alpha (n = 1153), Gamma (n = 122), Delta (n = 808), or Omicron variants (n = 696) were selected for analysis. No difference in frequency of hospitalization, intensive care unit (ICU) admission, and death were found among Alpha, Gamma, and Delta variants. However, patients with Omicron infection were significantly less likely to be admitted to the hospital, require oxygen, or admission to the ICU (χ2 = 12.8, P < .001; χ2 = 21.6, P < .002; χ2 = 9.6, P = .01, respectively). In patients whose vaccination status was known, a substantial number had breakthrough infections with Delta or Omicron variants (218/808 [26.9%] and 513/696 [73.7%], respectively). In breakthrough infections, hospitalization rate was similar regardless of variant by multivariate analysis. No difference in disease severity was identified between Omicron subvariants BA.1 and BA.2. ConclusionsDisease severity associated with Alpha, Gamma, and Delta variants is comparable while Omicron infections are significantly less severe. Breakthrough disease is significantly more common in patients with Omicron infection. 
                        more » 
                        « less   
                    
                            
                            Human YRNA 4 (HY4) plasma levels are a prognostic indicator of SARS-CoV-2 infection clinical severity
                        
                    
    
            SARS-CoV-2 infection can result in a range of outcomes from asymptomatic/mild disease to severe COVID-19/fatality. In this study, we investigated the differential expression of small noncoding RNAs (sncRNAs) between patient cohorts defined by disease severity. We collected plasma samples, stratified these based on clinical outcomes, and sequenced their circulating sncRNAs. Excitingly, we found YRNA HY4 displays significant differential expression (p=0.025) between patients experiencing mild and severe disease. In agreement with recent reports identifying plasma YRNAs as indicators of influenza infection severity, our results strongly suggest that circulating HY4 levels represent a powerful prognostic indicator of likely SARS-CoV-2 patient infection outcome. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2243532
- PAR ID:
- 10491797
- Publisher / Repository:
- microPublication Biology
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Abstract In less than nine months, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) killed over a million people, including >25,000 in New York City (NYC) alone. The COVID-19 pandemic caused by SARS-CoV-2 highlights clinical needs to detect infection, track strain evolution, and identify biomarkers of disease course. To address these challenges, we designed a fast (30-minute) colorimetric test (LAMP) for SARS-CoV-2 infection from naso/oropharyngeal swabs and a large-scale shotgun metatranscriptomics platform (total-RNA-seq) for host, viral, and microbial profiling. We applied these methods to clinical specimens gathered from 669 patients in New York City during the first two months of the outbreak, yielding a broad molecular portrait of the emerging COVID-19 disease. We find significant enrichment of a NYC-distinctive clade of the virus (20C), as well as host responses in interferon, ACE, hematological, and olfaction pathways. In addition, we use 50,821 patient records to find that renin–angiotensin–aldosterone system inhibitors have a protective effect for severe COVID-19 outcomes, unlike similar drugs. Finally, spatial transcriptomic data from COVID-19 patient autopsy tissues reveal distinct ACE2 expression loci, with macrophage and neutrophil infiltration in the lungs. These findings can inform public health and may help develop and drive SARS-CoV-2 diagnostic, prevention, and treatment strategies.more » « less
- 
            Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) results in varied clinical outcomes, with virus-induced chronic inflammation and tissue injury being associated with enhanced disease pathogenesis. To determine the role of tissue damage on immune populations recruitment and function, a mathematical model of innate immunity following SARS-CoV-2 infection has been proposed. The model was fitted to published longitudinal immune marker data from patients with mild and severe COVID-19 disease and key parameters were estimated for each clinical outcome. Analytical, bifurcation, and numerical investigations were conducted to determine the effect of parameters and initial conditions on long-term dynamics. The results were used to suggest changes needed to achieve immune resolution.more » « less
- 
            The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent responsible for coronavirus disease 2019 (COVID-19), has affected the lives of billions and killed millions of infected people. This virus has been demonstrated to have different outcomes among individuals, with some of them presenting a mild infection, while others present severe symptoms or even death. The identification of the molecular states related to the severity of a COVID-19 infection has become of the utmost importance to understanding the differences in critical immune response. In this study, we computationally processed a set of publicly available single-cell RNA-Seq (scRNA-Seq) data of 12 Bronchoalveolar Lavage Fluid (BALF) samples diagnosed as having a mild, severe, or no infection, and generated a high-quality dataset that consists of 63,734 cells, each with 23,916 genes. We extended the cell-type and sub-type composition identification and our analysis showed significant differences in cell-type composition in mild and severe groups compared to the normal. Importantly, inflammatory responses were dramatically elevated in the severe group, which was evidenced by the significant increase in macrophages, from 10.56% in the normal group to 20.97% in the mild group and 34.15% in the severe group. As an indicator of immune defense, populations of T cells accounted for 24.76% in the mild group and decreased to 7.35% in the severe group. To verify these findings, we developed several artificial neural networks (ANNs) and graph convolutional neural network (GCNN) models. We showed that the GCNN models reach a prediction accuracy of the infection of 91.16% using data from subtypes of macrophages. Overall, our study indicates significant differences in the gene expression profiles of inflammatory response and immune cells of severely infected patients.more » « less
- 
            The coronavirus disease 2019 (COVID-19) pandemic challenged the workings of human society, but in doing so, it advanced our understanding of the ecology and evolution of infectious diseases. Fluctuating transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) demonstrated the highly dynamic nature of human social behavior, often without government intervention. Evolution of SARS-CoV-2 in the first two years following spillover resulted primarily in increased transmissibility, while in the third year, the globally dominant virus variants had all evolved substantial immune evasion. The combination of viral evolution and the buildup of host immunity through vaccination and infection greatly decreased the realized virulence of SARS-CoV-2 due to the age dependence of disease severity. The COVID-19 pandemic was exacerbated by presymptomatic, asymptomatic, and highly heterogeneous transmission, as well as highly variable disease severity and the broad host range of SARS-CoV-2. Insights and tools developed during the COVID-19 pandemic could provide a stronger scientific basis for preventing, mitigating, and controlling future pandemics.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    