skip to main content


Title: A phosphorylation‐deficient ribosomal protein eS6 is largely functional in Arabidopsis thaliana , rescuing mutant defects from global translation and gene expression to photosynthesis and growth
Abstract

The eukaryote‐specific ribosomal protein of the small subunit eS6 is phosphorylated through the target of rapamycin (TOR) kinase pathway. Although this phosphorylation event responds dynamically to environmental conditions and has been studied for over 50 years, its biochemical and physiological significance remains controversial and poorly understood. Here, we report data fromArabidopsis thaliana, which indicate that plants expressing only a phospho‐deficient isoform of eS6 grow essentially normally under laboratory conditions. The eS6z (RPS6A) paralog of eS6 functionally rescued a double mutant in bothrps6aandrps6bgenes when expressed at approximately twice the wild‐type dosage. A mutant isoform of eS6z lacking the major six phosphorylatable serine and threonine residues in its carboxyl‐terminal tail also rescued the lethality, rosette growth, and polyribosome loading of the double mutant. This isoform also complemented many mutant phenotypes ofrps6that were newly characterized here, including photosynthetic efficiency, and most of the gene expression defects that were measured by transcriptomics and proteomics. However, compared with plants rescued with a phospho‐enabled version of eS6z, the phospho‐deficient seedlings retained a mild pointed‐leaf phenotype, root growth was reduced, and certain cell cycle‐related mRNAs and ribosome biogenesis proteins were misexpressed. The residual defects of the phospho‐deficient seedlings could be understood as an incomplete rescue of therps6mutant defects. There was little or no evidence for gain‐of‐function defects. As previously published, the phospho‐deficient eS6z also rescued therps6aandrps6bsingle mutants; however, phosphorylation of the eS6y (RPS6B) paralog remained lower than predicted, further underscoring that plants can tolerate phospho‐deficiency of eS6 well. Our data also yield new insights into how plants cope with mutations in essential, duplicated ribosomal protein isoforms.

 
more » « less
NSF-PAR ID:
10491864
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Plant Direct
Volume:
8
Issue:
1
ISSN:
2475-4455
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Some species in the dinoflagellate genusAlexandriumspp. produce a suite of neurotoxins that block sodium channels, known as paralytic shellfish toxins (PST), which have deleterious effects on grazers. Populations of the ubiquitous copepod grazerAcartia hudsonicathat have co‐occurred with toxicAlexandriumspp. are better adapted than naïve populations. The mechanism of adaptation is currently unknown. We hypothesized that a mutation in the sodium channel could account for the grazer adaptation. We tested two hypotheses: (1) Expression of the mutant sodium channel could be induced by exposure to toxicAlexandrium fundyense; (2) in the absence of induction, selection exerted by toxicA. fundyensewould favor copepods that predominantly express the mutant isoform. In the copepodA. hudsonica, both isoforms are expressed in all individuals in varying proportions. Thus, in addition to comparing expression ratios of wild‐type to mutant isoforms for individual copepods, we also partitioned copepods into three groups: those that predominantly express the mutant (PMI) isoform, the wild‐type (PWI) isoform, or both isoforms approximately equally (EI). There were no differences in isoform expression between individuals that were fed toxic and nontoxic food after three and 6 days; induction of mutant isoform expression did not occur. Furthermore, the hypothesis that mutant isoform expression responds to toxic food was also rejected. That is, no consistent evidence showed that the wild‐type to mutant isoform ratios decreased, or that the relative proportion ofPMIindividuals increased, due to the consumption of toxic food over four generations. However, in the selected line that was continuously exposed to toxic food sources, egg production rate increased, which suggested that adaptation occurred but was unrelated to sodium channel isoform expression.

     
    more » « less
  2. SUMMARY

    Cell differentiation and morphogenesis are crucial for the establishment of diverse cell types and organs in multicellular organisms. Trichome cells offer an excellent paradigm for dissecting the regulatory mechanisms of plant cell differentiation and morphogenesis due to their unique growth characteristics. Here, we report the isolation of an Arabidopsis mutant,aberrantlybranchedtrichome 3–1(abt3‐1), with a reduced trichome branching phenotype. Positional cloning and molecular complementation experiments confirmed thatabt3‐1is a new mutant allele ofAuxin resistant 1(AXR1), which encodes the N‐terminal half of ubiquitin‐activating enzyme E1 and functions in auxin signaling pathway. Meanwhile, we found that transgenic plants expressing constitutively active version ofROP2(CA‐ROP2) caused a reduction of trichome branches, resembling that ofabt3‐1. ROP2 is a member of Rho GTPase of plants (ROP) family, serving as versatile signaling switches involved in a range of cellular and developmental processes. Our genetic and biochemical analyses showedAXR1genetically interacted withROP2and mediated ROP2 protein stability. The loss ofAXR1aggravated the trichome defects ofCA‐ROP2and induced the accumulation of steady‐state ROP2. Consistently, elevatedAXR1expression levels suppressedROP2expression and partially rescued trichome branching defects inCA‐ROP2plants. Together, our results presented a new mutant allele ofAXR1, uncovered the effects ofAXR1andROP2during trichome development, and revealed a pathway ofROP2‐mediated regulation of plant cell morphogenesis in Arabidopsis.

     
    more » « less
  3. Abstract

    The sorting of eukaryotic proteins to various organellar destinations requires receptors that recognize cargo protein targeting signals and facilitate transport into the organelle. One such receptor is the peroxinPEX5, which recruits cytosolic cargo carrying a peroxisome‐targeting signal (PTS) type 1 (PTS1) for delivery into the peroxisomal lumen (matrix). In plants and mammals,PEX5 is also indirectly required for peroxisomal import of proteins carrying aPTS2 signal becausePEX5 binds thePTS2 receptor, bringing the associatedPTS2 cargo to the peroxisome along withPTS1 cargo. DespitePEX5 being thePTS1 cargo receptor, previously identified Arabidopsispex5mutants display either impairment of bothPTS1 andPTS2 import or defects only inPTS2 import. Here, we report the first Arabidopsispex5mutant with an exclusivePTS1 import defect. In addition to markedly diminishedGFPPTS1 import and decreased pex5‐2 protein accumulation, thispex5‐2mutant shows typical peroxisome‐related defects, including inefficient β‐oxidation and reduced growth. Growth at reduced or elevated temperatures ameliorated or exacerbatedpex5‐2peroxisome‐related defects, respectively, without markedly changing pex5‐2 protein levels. In contrast to the diminishedPTS1 import,PTS2 processing was only slightly impaired andPTS2‐GFPimport appeared normal inpex5‐2. This finding suggests that even minor peroxisomal localization of thePTS1 proteinDEG15, thePTS2‐processing protease, is sufficient to maintain robustPTS2 processing.

     
    more » « less
  4. Summary

    The GreenCut encompasses a suite of nucleus‐encoded proteins with orthologs among green lineage organisms (plants, green algae), but that are absent or poorly conserved in non‐photosynthetic/heterotrophic organisms. InChlamydomonas reinhardtii,CPLD49 (Conserved inPlantLineage andDiatoms49) is an uncharacterized GreenCut protein that is critical for maintaining normal photosynthetic function. We demonstrate that acpld49mutant has impaired photoautotrophic growth under high‐light conditions. The mutant exhibits a nearly 90% reduction in the level of the cytochromeb6fcomplex (Cytb6f), which impacts linear and cyclic electron transport, but does not compromise the ability of the strain to perform state transitions. Furthermore,CPLD49 strongly associates with thylakoid membranes where it may be part of a membrane protein complex with another GreenCut protein,CPLD38; a mutant null forCPLD38 also impacts Cytb6fcomplex accumulation. We investigated several potential functions ofCPLD49, with some suggested by protein homology. Our findings are congruent with the hypothesis thatCPLD38 andCPLD49 are part of a novel thylakoid membrane complex that primarily modulates accumulation, but also impacts the activity of the Cytb6fcomplex. Based on motifs ofCPLD49 and the activities of otherCPLD49‐like proteins, we suggest a role for this putative dehydrogenase in the synthesis of a lipophilic thylakoid membrane molecule or cofactor that influences the assembly and activity of Cytb6f.

     
    more » « less
  5. Summary

    Plants mount coordinated immune responses to defend themselves against pathogens. However, the cellular components required for plant immunity are not fully understood. The jasmonate‐mimicking coronatine (COR) toxin produced byPseudomonas syringaepv.tomato(Pst)DC3000 functions to overcome plant immunity. We previously isolated eight Arabidopsis (scord) mutants that exhibit increased susceptibility to aCOR‐deficient mutant ofPstDC3000. Among them, thescord6mutant exhibits defects both in stomatal closure response and in restricting bacterial multiplication inside the apoplast. However, the identity ofSCORD6remained elusive.

    In this study, we aim to identify theSCORD6gene.

    We identifiedSCORD6via next‐generation sequencing and found it to beMURUS1(MUR1), which is involved in the biosynthesis ofGDPl‐fucose.

    Discovery ofSCORD6asMUR1led to a series of experiments that revealed a multi‐faceted role ofl‐fucose biosynthesis in stomatal and apoplastic defenses as well as in pattern‐triggered immunity and effector‐triggered immunity, including glycosylation of pattern‐recognition receptors. Furthermore, compromised stomatal and/or apoplastic defenses were observed in mutants of several fucosyltransferases with specific substrates (e.g.O‐glycan,N‐glycan or theDELLAtranscriptional repressors). Collectively, these results uncover a novel and broad role ofl‐fucose and protein fucosylation in plant immunity.

     
    more » « less