skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Atacama Cosmology Telescope: A Measurement of the DR6 CMB Lensing Power Spectrum and Its Implications for Structure Growth
Abstract We present new measurements of cosmic microwave background (CMB) lensing over 9400 deg2of the sky. These lensing measurements are derived from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB data set, which consists of five seasons of ACT CMB temperature and polarization observations. We determine the amplitude of the CMB lensing power spectrum at 2.3% precision (43σsignificance) using a novel pipeline that minimizes sensitivity to foregrounds and to noise properties. To ensure that our results are robust, we analyze an extensive set of null tests, consistency tests, and systematic error estimates and employ a blinded analysis framework. Our CMB lensing power spectrum measurement provides constraints on the amplitude of cosmic structure that do not depend on Planck or galaxy survey data, thus giving independent information about large-scale structure growth and potential tensions in structure measurements. The baseline spectrum is well fit by a lensing amplitude ofAlens= 1.013 ± 0.023 relative to the Planck 2018 CMB power spectra best-fit ΛCDM model andAlens= 1.005 ± 0.023 relative to the ACT DR4 + WMAP best-fit model. From our lensing power spectrum measurement, we derive constraints on the parameter combination S 8 CMBL σ 8 Ω m / 0.3 0.25 of S 8 CMBL = 0.818 ± 0.022 from ACT DR6 CMB lensing alone and S 8 CMBL = 0.813 ± 0.018 when combining ACT DR6 and PlanckNPIPECMB lensing power spectra. These results are in excellent agreement with ΛCDM model constraints from Planck or ACT DR4 + WMAP CMB power spectrum measurements. Our lensing measurements from redshiftsz∼ 0.5–5 are thus fully consistent with ΛCDM structure growth predictions based on CMB anisotropies probing primarilyz∼ 1100. We find no evidence for a suppression of the amplitude of cosmic structure at low redshifts.  more » « less
Award ID(s):
2108126 2307727
PAR ID:
10491882
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
962
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 112
Size(s):
Article No. 112
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present cosmological constraints from a gravitational lensing mass map covering 9400 deg2reconstructed from measurements of the cosmic microwave background (CMB) made by the Atacama Cosmology Telescope (ACT) from 2017 to 2021. In combination with measurements of baryon acoustic oscillations and big bang nucleosynthesis, we obtain the clustering amplitudeσ8= 0.819 ± 0.015 at 1.8% precision, S 8 σ 8 ( Ω m / 0.3 ) 0.5 = 0.840 ± 0.028 , and the Hubble constantH0= (68.3 ± 1.1) km s−1Mpc−1at 1.6% precision. A joint constraint with Planck CMB lensing yieldsσ8= 0.812 ± 0.013, S 8 σ 8 ( Ω m / 0.3 ) 0.5 = 0.831 ± 0.023 , andH0= (68.1 ± 1.0) km s−1Mpc−1. These measurements agree with ΛCDM extrapolations from the CMB anisotropies measured by Planck. We revisit constraints from the KiDS, DES, and HSC galaxy surveys with a uniform set of assumptions and find thatS8from all three are lower than that from ACT+Planck lensing by levels ranging from 1.7σto 2.1σ. This motivates further measurements and comparison, not just between the CMB anisotropies and galaxy lensing but also between CMB lensing probingz∼ 0.5–5 on mostly linear scales and galaxy lensing atz∼ 0.5 on smaller scales. We combine with CMB anisotropies to constrain extensions of ΛCDM, limiting neutrino masses to ∑mν< 0.13 eV (95% c.l.), for example. We describe the mass map and related data products that will enable a wide array of cross-correlation science. Our results provide independent confirmation that the universe is spatially flat, conforms with general relativity, and is described remarkably well by the ΛCDM model, while paving a promising path for neutrino physics with lensing from upcoming ground-based CMB surveys. 
    more » « less
  2. Abstract We show the improvement to cosmological constraints from galaxy cluster surveys with the addition of cosmic microwave background (CMB)-cluster lensing data. We explore the cosmological implications of adding mass information from the 3.1σdetection of gravitational lensing of the CMB by galaxy clusters to the Sunyaev–Zel’dovich (SZ) selected galaxy cluster sample from the 2500 deg2SPT-SZ survey and targeted optical and X-ray follow-up data. In the ΛCDM model, the combination of the cluster sample with the Planck power spectrum measurements prefers σ 8 Ω m / 0.3 0.5 = 0.831 ± 0.020 . Adding the cluster data reduces the uncertainty on this quantity by a factor of 1.4, which is unchanged whether the 3.1σCMB-cluster lensing measurement is included or not. We then forecast the impact of CMB-cluster lensing measurements with future cluster catalogs. Adding CMB-cluster lensing measurements to the SZ cluster catalog of the ongoing SPT-3G survey is expected to improve the expected constraint on the dark energy equation of statewby a factor of 1.3 toσ(w) = 0.19. We find the largest improvements from CMB-cluster lensing measurements to be forσ8, where adding CMB-cluster lensing data to the cluster number counts reduces the expected uncertainty onσ8by respective factors of 2.4 and 3.6 for SPT-3G and CMB-S4. 
    more » « less
  3. Abstract The cluster mass–richness relation (MRR) is an observationally efficient and potentially powerful cosmological tool for constraining the matter density Ωmand the amplitude of fluctuationsσ8using the cluster abundance technique. We derive the MRR relation usingGalWCat19, a publicly available galaxy cluster catalog we created from the Sloan Digital Sky Survey-DR13 spectroscopic data set. In the MRR, cluster mass scales with richness as log M 200 = α + β log N 200 . We find that the MRR we derive is consistent with both the IllustrisTNG and mini-Uchuu cosmological numerical simulations, with a slope ofβ≈ 1. We use the MRR we derived to estimate cluster masses from theGalWCat19catalog, which we then use to set constraints on Ωmandσ8. Utilizing the all-member MRR, we obtain constraints of Ωm= 0.31 0.03 + 0.04 andσ8= 0.82 0.04 + 0.05 , and utilizing the red member MRR only, we obtain Ωm= 0.31 0.03 + 0.04 andσ8= 0.81 0.04 + 0.05 . Our constraints on Ωmandσ8are consistent and very competitive with the Planck 2018 results. 
    more » « less
  4. A theoretical analysis on crack formation and propagation was performed based on the coupling between the electrochemical process, classical elasticity, and fracture mechanics. The chemical potential of oxygen, thus oxygen partial pressure, at the oxygen electrode-electrolyte interface ( μ O 2 OE∣El ) was investigated as a function of transport properties, electrolyte thickness and operating conditions (e.g., steam concentration, constant current, and constant voltage). Our analysis shows that: a lower ionic area specific resistance (ASR), r i O E , and a higher electronic ASR ( r e O E ) of the oxygen electrode/electrolyte interface are in favor of suppressing crack formation. The μ O 2 O E E l , thus local pO2, are sensitive towards the operating parameters under galvanostatic or potentiostatic electrolysis. Constant current density electrolysis provides better robustness, especially at a high current density with a high steam content. While constant voltage electrolysis leads to greater variations of μ O 2 O E E l . Constant current electrolysis, however, is not suitable for an unstable oxygen electrode because μ O 2 O E E l can reach a very high value with a gradually increased r i O E . A crack may only occur under certain conditions when p O 2 T P B > p c r .  
    more » « less
  5. Abstract We present a strong lensing analysis of COOL J1241+2219, the brightest known gravitationally lensed galaxy atz≥ 5, based on new multiband Hubble Space Telescope (HST) imaging data. The lensed galaxy has a redshift ofz= 5.043, placing it shortly after the end of the “Epoch of Reionization,” and an AB magnitudezAB= 20.47 mag (Khullar et al.). As such, it serves as a touchstone for future research of that epoch. The high spatial resolution of HST reveals internal structure in the giant arc, from which we identify 15 constraints and construct a robust lens model. We use the lens model to extract the cluster mass and lensing magnification. We find that the mass enclosed within the Einstein radius of thez= 1.001 cluster lens is M ( < 5 .″ 77 ) = 1.079 0.007 + 0.023 × 10 13 M , significantly lower than other known strong lensing clusters at its redshift. The average magnification of the giant arc is 〈μarc〉 = 76 20 + 40 , a factor of 2.4 0.7 + 1.4 greater than previously estimated from ground-based data; the flux-weighted average magnification is 〈μarc〉 = 92 31 + 37 . We update the current measurements of the stellar mass and star formation rate (SFR) of the source for the revised magnification to log ( M / M ) = 9.7 ± 0.3 and SFR = 10.3 4.4 + 7.0 Myr−1, respectively. The powerful lensing magnification acting upon COOL J1241+2219 resolves the source and enables future studies of the properties of its star formation on a clump-by-clump basis. The lensing analysis presented here will support upcoming multiwavelength characterization with HST and JWST data of the stellar mass assembly and physical properties of this high-redshift lensed galaxy. 
    more » « less