skip to main content


Title: Laurentide ice sheet thinning and erosive regimes at Mount Washington, New Hampshire, inferred from multiple cosmogenic nuclides
The northward retreat history of the Laurentide ice sheet through the lowlands of the northeastern United States during the last deglaciation is well constrained, but its vertical thinning history is less well known because of the lack of direct constraints on ice thickness through time and space. In addition, the highest elevations in New England are characterized by gently sloping upland surfaces and weathered block fields, features with an uncertain history. To better constrain ice-sheet history in this area and its relationship to alpine geomorphology, we present 20 new 10Be and seven in situ 14C cosmogenic nuclide measurements along an elevation transect at Mount Washington, New Hampshire, the highest mountain in the northeastern United States (1917 m above sea level [a.s.l.]). Our results suggest substantially different exposure and erosion histories on the upper and lower parts of the mountain. Above 1600 m a.s.l., 10Be and in situ 14C measurements are consistent with upper reaches of the mountain deglaciating by 18 ka. However, some 10Be ages are up to several times greater than the age of the last deglaciation, consistent with weakly erosive, cold-based ice that did not deeply erode preglacial surfaces. Below 1600 m a.s.l., 10Be ages are indistinguishable over a nearly 900 m range in elevation and imply rapid ice-surface lowering ca. 14.1 ± 1.1 ka (1 standard deviation; n = 9). This shift from slow thinning early in the deglaciation on the upper part of the mountain to abrupt thinning across the lower elevations coincided with accelerated ice-margin retreat through the region recorded by Connecticut River valley varve records during the Bølling interstadial. The Mount Washington cosmogenic nuclide vertical transect and the Connecticut River valley varve record, along with other New England cosmogenic nuclide records, suggest rapid ice-volume loss in the interior northeastern United States in response to Bølling warming.  more » « less
Award ID(s):
1735676
NSF-PAR ID:
10492011
Author(s) / Creator(s):
Editor(s):
Richard B. Waitt; Glenn D. Thackray; Alan R. Gillespie
Publisher / Repository:
Geological Society of America
Date Published:
Journal Name:
GSA Special Paper
ISSN:
9780813725482
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Accurate reconstruction of Laurentide Ice Sheet volume changes following the Last Glacial Maximum is critical for understanding ice sheet contribution to sea-level rise, the resulting influence of meltwater on oceanic circulation, and the spatial and temporal patterns of deglaciation. Here, we provide empirical constraints on Laurentide Ice Sheet thinning during the last deglaciation by measuring in situ cosmogenic 10Be in 81 samples collected along vertical transects of nine mountains in the northeastern United States. In conjunction with 107 exposure age samples over five vertical transects from previous studies, we reconstruct ice sheet thinning history. At peripheral sites (within 200 km of the terminal moraine), we find evidence for ∼600 m of thinning between 19.5 ka and 17.5 ka, which is coincident with the slow initial margin retreat indicated by varve records. At locations >400 km north of the terminal moraine, exposure ages above and below 1200 m a.s.l. exhibit different patterns. Ages above this elevation are variable and older, while lower elevation ages are indistinguishable over 800−1000 m elevation ranges, a pattern that suggests a subglacial thermal boundary at ∼1200 m a.s.l. separating erosive, warm-based ice below and polythermal, minimally erosive ice above. Low-elevation ages from up-ice mountains are between 15 ka and 13 ka, which suggests rapid thinning of ∼1000 m coincident with Bølling-Allerød warming. These rates of rapid paleo-ice thinning are comparable to those of other vertical exposure age transects around the world and may have been faster than modern basin-wide thinning rates in Antarctica and Greenland, which suggests that the southeastern Laurentide Ice Sheet was highly sensitive to a warming climate. 
    more » « less
  2. Constraining the timing and rate of Laurentide Ice Sheet (LIS) retreat through the northeastern United States is important for understanding the co-evolution of complex climatic and glaciologic events that characterized the end of the Pleistocene epoch. However, no in situ cosmogenic 10Be exposure age estimates for LIS retreat exist through large parts of Connecticut or Massachusetts. Due to the large disagreement between radiocarbon and 10Be ages constraining LIS retreat at the maximum southern margin and the paucity of data in central New England, the timing of LIS retreat through this region is uncertain. Here, we date LIS retreat through south-central New England using 14 new in situ cosmogenic 10Be exposure ages measured in samples collected from bedrock and boulders. Our results suggest ice retreated entirely from Connecticut by 18.3 ± 0.3 ka (n = 3). In Massachusetts, exposure ages from similar latitudes suggest ice may have occupied the Hudson River Valley up to 2 kyr longer (15.2 ± 0.3 ka, average, n = 2) than the Connecticut River Valley (17.4 ± 1.0 ka, average, n = 5). We use these new ages to provide insight about LIS retreat timing during the early deglacial period and to explore the mismatch between radiocarbon and cosmogenic deglacial age chronologies in this region.

     
    more » « less
  3. Abstract. Evidence for the timing and pace of past grounding lineretreat of the Thwaites Glacier system in the Amundsen Sea embayment (ASE)of Antarctica provides constraints for models that are used to predict thefuture trajectory of the West Antarctic Ice Sheet (WAIS). Existingcosmogenic nuclide surface exposure ages suggest that Pope Glacier, a formertributary of Thwaites Glacier, experienced rapid thinning in the early tomid-Holocene. There are relatively few exposure ages from the lower ice-freesections of Mt. Murphy (<300 m a.s.l.; metres above sea level) that are uncomplicated byeither nuclide inheritance or scatter due to localised topographiccomplexities; this makes the trajectory for the latter stages ofdeglaciation uncertain. This paper presents 12 new 10Be exposure agesfrom erratic cobbles collected from the western flank of Mt. Murphy, within160 m of the modern ice surface and 1 km from the present grounding line.The ages comprise two tightly clustered populations with mean deglaciationages of 7.1 ± 0.1 and 6.4 ± 0.1 ka (1 SE). Linear regressionanalysis applied to the age–elevation array of all available exposure agesfrom Mt. Murphy indicates that the median rate of thinning of Pope Glacierwas 0.27 m yr−1 between 8.1–6.3 ka, occurring 1.5 times faster thanpreviously thought. Furthermore, this analysis better constrains theuncertainty (95 % confidence interval) in the timing of deglaciation atthe base of the Mt. Murphy vertical profile (∼ 80 m above themodern ice surface), shifting it to earlier in the Holocene (from 5.2 ± 0.7 to 6.3 ± 0.4 ka). Taken together, the results presentedhere suggest that early- to mid-Holocene thinning of Pope Glacier occurredover a shorter interval than previously assumed and permit a longer durationover which subsequent late Holocene re-thickening could have occurred. 
    more » « less
  4. The North Atlantic was a key locus for circulation-driven abrupt climate change in the past and could play a similar role in the future. Abrupt cold reversals, including the 8.2 ka event, punctuated the otherwise warm early Holocene in the North Atlantic region and serve as useful paleo examples of rapid climate change. In this work, we assess the cryospheric response to early Holocene climate history on Baffin Island, Arctic Canada, using cosmogenic radionuclide dating of moraines. We present 39 new 10Be ages from four sets of multi-crested early Holocene moraines deposited by cirque glaciers and ice cap outlet glaciers, as well as erratic boulders along adjacent fiords to constrain the timing of regional deglaciation. The age of one moraine is additionally constrained by in situ 14C measurements, which confirm 10Be inheritance in some samples. All four moraines were deposited between ~9.2 and 8.0 ka, and their average ages coincide with abrupt coolings at 9.3 and 8.2 ka that are recorded in Greenland ice cores. Freshwater delivery to the North Atlantic that reduced the flux of warm Atlantic water into Baffin Bay may explain brief intervals of glacier advance, although moraine formation cannot be definitively tied to centennial-scale cold reversals. We thus explore other possible contributing factors, including ice dynamics related to retreat of Laurentide Ice Sheet outlet glaciers. Using a numerical glacier model, we show that the debuttressing effect of trunk valley deglaciation may have contributed to these morainebuilding events. These new age constraints and process insights highlight the complex behavior of the cryosphere during regional deglaciation and suggest that multiple abrupt cold reversalsdas well as deglacial ice dynamicsdlikely played a role in early Holocene moraine formation on Baffin Island. 
    more » « less
  5. Abstract. Sometime during the middle to late Holocene (8.2 ka to ∼ 1850–1900 CE), the Greenland Ice Sheet (GrIS) was smaller than its currentconfiguration. Determining the exact dimensions of the Holocene ice-sheetminimum and the duration that the ice margin rested inboard of its currentposition remains challenging. Contemporary retreat of the GrIS from itshistorical maximum extent in southwestern Greenland is exposing a landscapethat holds clues regarding the configuration and timing of past ice-sheetminima. To quantify the duration of the time the GrIS margin was near itsmodern extent we develop a new technique for Greenland that utilizes in situcosmogenic 10Be–14C–26Al in bedrock samples that have becomeice-free only in the last few decades due to the retreating ice-sheet margin atKangiata Nunaata Sermia (n=12 sites, 36 measurements; KNS), southwest Greenland. To maximizethe utility of this approach, we refine the deglaciation history of the regionwith stand-alone 10Be measurements (n=49) and traditional 14C agesfrom sedimentary deposits contained in proglacial–threshold lakes. We combineour reconstructed ice-margin history in the KNS region with additionalgeologic records from southwestern Greenland and recent model simulations ofGrIS change to constrain the timing of the GrIS minimum in southwestGreenland and the magnitude of Holocene inland GrIS retreat, as well as to explore theregional climate history influencing Holocene ice-sheet behavior. Our10Be–14C–26Al measurements reveal that (1) KNS retreated behindits modern margin just before 10 ka, but it likely stabilized near thepresent GrIS margin for several thousand years before retreating fartherinland, and (2) pre-Holocene 10Be detected in several of our sample sitesis most easily explained by several thousand years of surface exposure duringthe last interglaciation. Moreover, our new results indicate that the minimumextent of the GrIS likely occurred after ∼5 ka, and the GrISmargin may have approached its eventual historical maximum extent as early as∼2 ka. Recent simulations of GrIS change are able to match thegeologic record of ice-sheet change in regions dominated by surface massbalance, but they produce a poorer model–data fit in areas influenced by oceanicand dynamic processes. Simulations that achieve the best model–data fitsuggest that inland retreat of the ice margin driven by early to middleHolocene warmth may have been mitigated by increased precipitation. Triple10Be–14C–26Al measurements in recently deglaciated bedrockprovide a new tool to help decipher the duration of smaller-than-present iceover multiple timescales. Modern retreat of the GrIS margin in southwestGreenland is revealing a bedrock landscape that was also exposed during themigration of the GrIS margin towards its Holocene minimum extent, but it has yetto tap into a landscape that remained ice-covered throughout the entireHolocene. 
    more » « less